
GPIB
NI-488DDKTM Software
Reference Manual

NI-488DDK Software Reference Manual

January 2003 Edition
Part Number 321418B-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 61 2 9672 8846, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,
Canada (Calgary) 403 274 9391, Canada (Montreal) 514 288 5722, Canada (Ottawa) 613 233 5949,
Canada (Québec) 514 694 8521, Canada (Toronto) 905 785 0085, Canada (Vancouver) 514 685 7530,
China 86 21 6555 7838, Czech Republic 42 02 2423 5774, Denmark 45 45 76 26 00,
Finland 385 0 9 725 725 11, France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, Greece 30 2 10 42 96 427,
Hong Kong 2645 3186, India 91 80 4190000, Israel 972 0 3 6393737, Italy 39 02 413091,
Japan 81 3 5472 2970, Korea 82 02 3451 3400, Malaysia 603 9059 6711, Mexico 001 800 010 0793,
Netherlands 31 0 348 433 466, New Zealand 64 09 914 0488, Norway 47 0 32 27 73 00,
Poland 48 0 22 3390 150, Portugal 351 210 311 210, Russia 7 095 238 7139, Singapore 65 6 226 5886,
Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197, Spain 34 91 640 0085, Sweden 46 0 8 587 895 00,
Switzerland 41 56 200 51 51, Taiwan 886 2 2528 7227, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on the documentation, send email to techpubs@ni.com.

© 1997–2003 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
HS488™, National Instruments™, NI™, NI-488™, NI-488.2™, NI-488DDK™, and ni.com™are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v NI-488DDK Software Reference Manual

Contents

About This Manual
Conventions ... ix
Related Documentation..x

Chapter 1
Introduction

NI-488DDK Software..1-1
Working with the Distribution Media ...1-1
Working with the Distribution Contents ...1-2

GPIB Overview..1-3
Talkers, Listeners, and Controllers..1-3
Controller-In-Charge and System Controller ..1-3
GPIB Addressing...1-3
Sending Messages Across the GPIB ...1-4

Data Lines ...1-4
Handshake Lines ...1-4
Interface Management Lines...1-5

Setting Up and Configuring Your System...1-6
Controlling More Than One Board ...1-7

Configuration Requirements ...1-7

Chapter 2
Developing Your Driver

Driver Organization ...2-1
Driver Coding Conventions ...2-4
Choosing an Implementation Method..2-4
Writing a New OS Layer ...2-5

Support Code Location..2-5
Porting the DDK Driver ..2-6

Compiling, Linking, and Installing the Driver ..2-6
Testing and Debugging the Driver...2-7

Debugging Run-Time Errors...2-8
Documentation of Debugging Tools ...2-9

Contents

NI-488DDK Software Reference Manual vi ni.com

Chapter 3
Developing Your Application

Using NI-488DDK Functions.. 3-1
Items to Include in Your Application.. 3-1
Checking Status with Global Variables... 3-2

Status Word (ibsta).. 3-2
Error Variable (iberr) .. 3-3
Count Variables (ibcnt and ibcntl) .. 3-4

Compiling and Linking Your Application .. 3-4
Debugging Considerations .. 3-5

Using the Global Status Variables .. 3-5
Configuration Errors ... 3-6
Timing Errors .. 3-6
Communication Errors .. 3-6

Repeat Addressing .. 3-6
Termination Method ... 3-6

Chapter 4
NI-488DDK Functions

Legend ... 4-1
List of NI-488DDK Functions... 4-2
IBASK ... 4-3
IBCAC... 4-4
IBCMD.. 4-5
IBCONFIG .. 4-6
IBDMA.. 4-7
IBEOS.. 4-8
IBEOT ... 4-10
IBFIND.. 4-11
IBGTS.. 4-12
IBIST ... 4-13
IBLINES.. 4-14
IBLN.. 4-16
IBLOC ... 4-17
IBONL... 4-18
IBPAD ... 4-19
IBPOKE... 4-20
IBPPC.. 4-21
IBRD.. 4-22
IBRPP.. 4-23
IBRSC.. 4-24
IBRSV ... 4-25

Contents

© National Instruments Corporation vii NI-488DDK Software Reference Manual

IBSAD ...4-26
IBSIC ...4-27
IBSRE ..4-28
IBTMO...4-29
IBWAIT ...4-31
IBWRT...4-33

Chapter 5
GPIB Programming Techniques

Termination of Data Transfers...5-1
Waiting for GPIB Conditions ..5-2
Talker/Listener Applications ...5-2
Serial Polling..5-2

Service Requests from IEEE 488 Devices ..5-3
Service Requests from IEEE 488.2 Devices ...5-3
SRQ and Serial Polling with NI-488DDK Functions......................................5-3

Parallel Polling...5-4
Implementing a Parallel Poll with NI-488DDK Functions5-4

Appendix A
Multiline Interface Messages

Appendix B
Status Word Conditions

Appendix C
Error Codes and Solutions

Appendix D
Technical Support and Professional Services

Glossary

Index

© National Instruments Corporation ix NI-488DDK Software Reference Manual

About This Manual

This manual describes the features and functions of the NI-488 Driver
Development Kit (NI-488DDK) software. You can customize the
NI-488DDK software for the operating system you use. This manual
assumes that you are already familiar with general operating system
fundamentals and device driver development concepts.

Conventions
The following conventions appear in this manual:

This icon denotes a note, which alerts you to important information.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

monospace bold Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

IEEE 488 and IEEE 488 and IEEE 488.2 refer to the ANSI/IEEE Standard 488.1-1987
IEEE 488.2 and the ANSI/IEEE Standard 488.2-1992, respectively, which define

the GPIB.

paths Paths in this manual are denoted using backslashes (\) or forward
slashes (/) to separate drive names, directories, folders, and files.

About This Manual

NI-488DDK Software Reference Manual x ni.com

Related Documentation
The following documents contain information that you might find helpful
as you read this manual:

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface
for Programmable Instrumentation

• ANSI/IEEE Standard 488.2-1992, IEEE Standard Codes, Formats,
Protocols, and Common Commands

© National Instruments Corporation 1-1 NI-488DDK Software Reference Manual

1
Introduction

This chapter describes the NI-488DDK software and gives an overview
of GPIB.

NI-488DDK Software
The NI-488DDK software provides a subset of the GPIB functionality
found in standard NI-488.2 drivers from National Instruments. It is
intended primarily for use by customers who need to develop GPIB
applications on computers or operating systems for which standard
NI-488.2 kits are not available.

The application programming interface (API) of the NI-488DDK software
is completely compatible with the API of standard NI-488.2 drivers.
However, internally, the NI-488DDK software is designed to be easily
customized by users familiar with device driver development. The design
is compatible with a variety of modern operating systems, including both
singlethreaded and multithreaded kernels. For your convenience, the
software distribution includes one or more example OS-specific
implementations that you can use with little or no change on the intended
operating system. You can also use these implementations as templates for
developing your own OS-specific implementations.

Working with the Distribution Media
The NI-488DDK software is distributed on a CD-ROM. When distributed
electronically, the software is provided in a single, compressed,
tar-formatted file compatible with most UNIX-based systems.
The top-level contents of the CD-ROM are as follows:

README Version specific documentation file
DDK_TAR.Z Alternate distribution file for UNIX users
DRIVER Driver source files directory
UTIL Utility source files directory
PATENTS.TXT National Instruments patents

information file

Chapter 1 Introduction

NI-488DDK Software Reference Manual 1-2 ni.com

The DDK_TAR.Z file contains the complete NI-488DDK software
distribution in a compressed, tar format that UNIX users and others may
find easier to work with when transferring the software to other systems.
To extract the distribution files from DDK_TAR.Z, or from a similar file
received electronically, transfer the file without conversion (for example, if
using FTP, transfer the file in binary mode) to a UNIX-compatible system
and enter the following commands:

uncompress DDK_TAR.Z

tar xvf DDK_TAR

After the contents of the file have been extracted, the current directory
contains a distribution directory named ni488ddk_vX.X, where X.X is a
version number. The contents of the extracted distribution directory are as
follows:

README Version-specific documentation file
driver/ Driver source files directory
util/ Utility source files directory

Working with the Distribution Contents
The _README_ file contains any additional information or changes to the
software documentation made since this manual was last updated.

The driver/ directory on the distribution media contains all of the source
files necessary to build the NI-488DDK driver. To port the DDK driver to
a specific operating system, you generally need to modify only the files in
one of the driver/OS_Layer/ subdirectories. This process is described
in greater detail in Chapter 2, Developing Your Driver.

The util/ directory on the distribution media contains the C source files
for a sample IEEE 488.2 application library, as well as an automated driver
test program and other diagnostic tools. You can use the 488.2 application
library to provide a layer of high-level GPIB functionality to your
application and to see how to use some of the low-level functions in the
DDK driver. You can use the driver test program to verify that your DDK
driver is working properly after you have written the files in the new
OS Layer directory. Use of the driver test program and other diagnostic
tools is described in greater detail in Chapter 2, Developing Your Driver.
Use of the IEEE 488.2 application library is described in Chapter 3,
Developing Your Application. Some of the IEEE 488.2 routines provided
in the application library for SRQ servicing are described in Chapter 5,
GPIB Programming Techniques. For information about other routines
provided in the IEEE 488.2 library, refer to the ni4882.c file in the util/
directory.

Chapter 1 Introduction

© National Instruments Corporation 1-3 NI-488DDK Software Reference Manual

GPIB Overview
The ANSI/IEEE Standard 488.1-1987, also known as GPIB (General
Purpose Interface Bus), describes a standard interface for communication
between instruments and controllers from various vendors. It contains
information about electrical, mechanical, and functional specifications.
The GPIB is a digital, 8-bit parallel communications interface with data
transfer rates of 1 Mbyte/s and above, using a 3-wire handshake. The bus
supports one System Controller, usually a computer, and up to 14
additional instruments. The ANSI/IEEE Standard 488.2-1992 extends
IEEE 488.1 by defining a bus communication protocol, a common set of
data codes and formats, and a generic set of common device commands.

Talkers, Listeners, and Controllers
GPIB devices can be Talkers, Listeners, or Controllers. A Talker sends out
data messages. Listeners receive data messages. The Controller, usually a
computer, manages the flow of information on the bus. It defines the
communication links and sends GPIB commands to devices.

Some devices are capable of playing more than one role. A digital
voltmeter, for example, can be a Talker and a Listener. If your personal
computer has a National Instruments GPIB interface board and
NI-488DDK software installed, it can function as a Talker, Listener, and
Controller.

Controller-In-Charge and System Controller
You can have multiple Controllers on the GPIB, but only one Controller at
a time can be the active Controller, or Controller-In-Charge (CIC). The
CIC can either be active or inactive (Standby) Controller. Control can pass
from the current CIC to an idle Controller, but only the System Controller,
usually a GPIB interface board, can make itself the CIC.

GPIB Addressing
All GPIB devices and boards must be assigned a unique GPIB address.
A GPIB address is made up of two parts: a primary address and an optional
secondary address.

The primary address is a number in the range 0 to 30. The GPIB Controller
uses this address to form a talk or listen address that is sent over the GPIB
when communicating with a device.

Chapter 1 Introduction

NI-488DDK Software Reference Manual 1-4 ni.com

A talk address is formed by setting bit 6, the TA (Talk Active) bit of the
GPIB address. A listen address is formed by setting bit 5, the LA (Listen
Active) bit of the GPIB address. For example, if a device is at address 1,
the Controller sends hex 41 (address 1 with bit 6 set) to make the device
a Talker. Because the Controller is usually at primary address 0, it sends
hex 20 (address 0 with bit 5 set) to make itself a Listener. Table 1-1 shows
the configuration of the GPIB address bits.

With some devices, you can use secondary addressing. A secondary
address is a number in the range hex 60 to hex 7E. When secondary
addressing is in use, the Controller sends the primary talk or listen address
of the device followed by the secondary address of the device.

Sending Messages across the GPIB
Devices on the bus communicate by sending messages. Signals and lines
transfer these messages across the GPIB interface, which consists of
16 signal lines and eight ground return (shield drain) lines. The 16 signal
lines are discussed in the following sections.

Data Lines
Eight data lines, DIO1 through DIO8, carry both data and command
messages.

Handshake Lines
Three hardware handshake lines asynchronously control the transfer of
message bytes between devices. This process is a three-wire interlocked
handshake, and it guarantees that devices send and receive message bytes
on the data lines without transmission error. Table 1-2 summarizes the
GPIB handshake lines.

Table 1-1. GPIB Address Bits

Bit
Position

7 6 5 4 3 2 1 0

Meaning 0 TA LA GPIB Primary Address (Range 0-30)

Chapter 1 Introduction

© National Instruments Corporation 1-5 NI-488DDK Software Reference Manual

Interface Management Lines
Five GPIB hardware lines manage the flow of information across the bus.
Table 1-3 summarizes the GPIB interface management lines.

Table 1-2. GPIB Handshake Lines

Line Description

NRFD
(not ready for data)

Listening device is ready/not ready to receive a
message byte. Also used by the Talker to signal
high-speed GPIB transfers.

NDAC
(not data accepted)

Listening device has/has not accepted a
message byte.

DAV
(data valid)

Talking device indicates signals on data lines
are stable (valid) data.

Table 1-3. GPIB Interface Management Lines

Line Description

ATN
(attention)

Controller drives ATN true when it sends
commands and false when it sends data messages.

IFC
(interface clear)

System Controller drives the IFC line to initialize
the bus and make itself CIC.

REN
(remote enable)

System Controller drives the REN line to place
devices in remote or local program mode.

SRQ
(service
request)

Any device can drive the SRQ line to
asynchronously request service from the Controller.

EOI
(end or identify)

Talker uses the EOI line to mark the end of a data
message. Controller uses the EOI line when it
conducts a parallel poll.

Chapter 1 Introduction

NI-488DDK Software Reference Manual 1-6 ni.com

Setting Up and Configuring Your System
Devices are usually connected with a cable assembly consisting of a
shielded 24-conductor cable with both a plug and receptacle connector at
each end. With this design, you can link devices in a linear configuration,
a star configuration, or a combination of the two. Figure 1-1 shows the
linear and star configurations.

Figure 1-1. Linear and Star System Configuration

Device A

Device B

Device C

Device DDevice A

Device CDevice B

a. Linear Configuration b. Star Configuration

Chapter 1 Introduction

© National Instruments Corporation 1-7 NI-488DDK Software Reference Manual

Controlling More Than One Board
Figure 1-2 shows an example of a multiboard system configuration. gpib0
is the access board for the voltmeter, and gpib1 is the access board for the
plotter and printer. The control functions of the devices automatically
access their respective boards.

Figure 1-2. Example of Multiboard System Setup

Configuration Requirements
To achieve the high data transfer rate that the GPIB was designed for, you
must limit the physical distance between devices and the number of devices
on the bus. The following restrictions are typical:

• A maximum separation of 4 m between any two devices and an
average separation of 2 m over the entire bus

• A maximum total cable length of 20 m

• A maximum of 15 devices connected to each bus, with at least
two-thirds powered on

Digital
Voltometer

Plotter

Printer

gpib0

gpib1

Another
GPIB

One
GPIB

Chapter 1 Introduction

NI-488DDK Software Reference Manual 1-8 ni.com

For high-speed operation, the following restrictions apply:

• All devices in the system must be powered on

• Cable lengths as short as possible up to a maximum of 15 m of cable
for each system

• With at least one equivalent device load per meter of cable

If you want to exceed these limitations, you can use bus extenders to
increase the cable length or expanders to increase the number of device
loads. Extenders and expanders are available from National Instruments.

© National Instruments Corporation 2-1 NI-488DDK Software Reference Manual

2
Developing Your Driver

This chapter describes the organization of the NI-488DDK driver and
provides guidelines for developing and debugging the driver on a particular
operating system.

Driver Organization
The NI-488DDK driver consists of a low-level driver module (IB) and a
high-level language interface module (CIB). The IB module includes three
separate layers: an Operating System Layer, Common Layer, and
Hardware Layer. The CIB module includes only two layers: an Operating
System Layer and Common Layer. The organization of the files in the
driver/ directory on the distribution media, as shown in Table 2-1,
reflects the organization of both the IB and CIB modules.

For a list of the specific files included in a particular DDK release, refer to
the _README_ file in the main driver/ directory and to the _README_
files, if present, in the HW_Layer/ and OS_Layer/ subdirectories.

The IB module (ib.c) and CIB module (cib.c) are organized as shown in
Figures 2-1 and 2-2, respectively. As indicated in Figure 2-1, the ib.c file
serves as a container, among other things, for all the other files that make
up the low-level driver. Likewise, the cib.c file serves as a container for
the files that make up the C language interface. The ib.c and cib.c files
are described in the Writing a New OS Layer section of this chapter.

Chapter 2 Developing Your Driver

NI-488DDK Software Reference Manual 2-2 ni.com

Table 2-1. NI-488DDK Driver Directory

Functional
Layer File Description

Hardware
Dependent
(HW_Layer/)

README Hardware-specific documentation file (optional)

nichp_hw.h General chip-level include file

ni<Bus Type>_hw.c Bus-specific source files

ni<Bus Type>_hw.h Bus-specific include files

nitn_chw.c TNT chip-specific source file

nitn_chw.h TNT chip-specific include file

Operating
System
Dependent
(OS_Layer/*/)

README OS-specific documentation file (optional)

cib.c OS-specific C Language/API source file

cib.h OS-specific C Language/API include file

ib.c OS-specific driver source file

ib.h OS-specific driver include file

makefile OS/compiler-specific driver make file

Common _README_ Version-specific documentation file

cibgen.c Generic C language interface source file

ibconf.h Driver configuration include file

ni488.c NI-488DDK functions source file

ni_proto.h Prototype include file

ni_suprt.c Support functions source file

ni_suprt.h Support functions include file

ugpib.h User application include file

Chapter 2 Developing Your Driver

© National Instruments Corporation 2-3 NI-488DDK Software Reference Manual

/**

 * NI-488 Driver Development Kit for GPIB Interfaces

 * Copyright (c) 1997-2003 National Instruments Corporation

 * All rights reserved.

 **/

 :

 :

#include "cib.h" /* NI include files... */

#include "ugpib.h"

#include "ibconf.h"

#include "ib.h"

#include "ni_suprt.h"

#include "nichp_hw.h"

#include "nivme_hw.h"

#include "ni_proto.h"

 :

 :

#include "ni_suprt.c" /* Generic IB code... */

#include "ni488.c"

#include "nivme_hw.c" /* HW-specific code */

 :

 :

Figure 2-1. The IB Driver Module (ib.c)

/**

 * NI-488.2 C Language Interface

 * Copyright (c) 1997-2003 National Instruments Corporation

 * All rights reserved.

 **/

 :

 :

#include "cib.h"

#include "ugpib.h"

 :

 :

#include "cibgen.c" /* Generic CIB code */

 :

 :

Figure 2-2. The CIB Language Interface Module (cib.c)

Chapter 2 Developing Your Driver

NI-488DDK Software Reference Manual 2-4 ni.com

Driver Coding Conventions
Following are some of the coding conventions adopted throughout the
source files of the NI-488DDK driver. You may find it useful to keep the
following conventions in mind when studying the driver source code, and
when adding new code of your own:

• The names of all C functions and variables begin with a lowercase
letter, and may contain both uppercase and lowercase letters.

• The names of all C macros begin with an uppercase letter, and may
contain both uppercase and lowercase letters.

• The names of all #define constants are composed of only uppercase
letters.

• With the exception of the cibgen.c source file, all functions within
the same C source file begin with the prefix of the file name itself. For
example, all functions in the ib.c file begin with the prefix ib_, and
all functions in the ni_suprt.c file begin with the prefix ni_.

Choosing an Implementation Method
Depending on your target operating system, you can implement the
NI-488DDK driver as a user or kernel-level driver. You can link a
user-level driver directly to your application, just as you would any other
object file or library. You install a kernel-level driver as part of the
operating system, thus making it a system resource available to all
application programs. In general, user-level drivers are easier to implement
than kernel-level drivers. Some operating systems support either method,
while others support only the kernel-level method.

The implementation method you choose may depend on several factors.
For example, a user-level implementation may be adequate if the driver is
used by only one application at a time and the driver does not use interrupts.
Conversely, a kernel-level implementation may be necessary if the driver
must be shared among several applications or if you want interrupt support.
There may also be performance issues related to either implementation
choice. Refer to the driver development documentation for your target
operating system for more information about your options.

In a user-level implementation, all of the .c files in the target OS_Layer
subdirectory are linked to the application program, either directly or
indirectly. In a kernel-level implementation, only the cib.c file is linked
to the application program, while the ib.c file is linked into the operating

Chapter 2 Developing Your Driver

© National Instruments Corporation 2-5 NI-488DDK Software Reference Manual

system kernel. Refer to Figures 2-3 and 2-4 for illustrations of the
differences between these two implementation methods.

Figure 2-3. User-Level Implementation

Figure 2-4. Kernel-Level Implementation

Writing a New OS Layer
Regardless of the implementation method you choose, porting the
NI-488DDK driver primarily involves writing a new OS Layer for the
target operating system. The OS Layer contains all of the system-specific
code necessary to interface the application program to the DDK driver, and
to interface the driver to the system.

Support Code Location
The code that interfaces the application program to the DDK driver is
contained in the cib.* files. These files make up the OS-dependent
portion of the C language interface to the driver. The generic,
OS-independent portion of the C language interface is in the cibgen.c file
of the main driver/ directory.

The low-level OS interface to the other layers of the DDK driver is
provided through a set of macros and data types defined in the ib.h file,
with additional support code provided in the ib.c file as needed. This
support code includes several constants, variables, and functions that are
required in all NI-488DDK implementations. The ib.c file also provides
any other OS-specific functionality required for the operation of the driver,
such as initializing the driver, registering interrupts, and calling the

Application
Program

CIB
Module

IB
Module

GPIB
Hardware

Application
Program

CIB
Module

IB
Module

GPIB
Hardware

User Space Kernel Space

Chapter 2 Developing Your Driver

NI-488DDK Software Reference Manual 2-6 ni.com

ni488_enter entry point after you call the driver via its standard entry
point. On UNIX and some other operating systems, this entry point is
typically ioctl.

A listing and brief description of the constants, macros, functions, and data
types required in the OS Layer files of the driver are provided in the
README file of the main driver/ directory. For a better understanding
of the usage and purpose of the items listed there, refer to the code and
comments of the C files in the example driver/OS_Layer/
subdirectories.

Porting the DDK Driver
The easiest way to port the DDK driver to a new OS is to copy the files in
one of the example OS Layer subdirectories to a new subdirectory and then
modify those files for the new OS. Choose an OS Layer implementation
that is most like the one you want to develop for the target operating
system. In some cases, it may be necessary to divide the functionality
contained in one of the .c files into two or more files. For example, if some
of the ib.c functionality must be written in assembly language, you might
decide to set up two ib files, ib.c and ib.asm. If at all possible, avoid
modifying any driver files outside of the OS Layer unless there is a
compelling reason to do so (for example, to fix a bug). By limiting your
changes to the OS files only, you ensure maximum source code
compatibility with any future versions of the DDK package, as well as
functional compatibility with other NI-488 drivers from National
Instruments.

Note National Instruments generally cannot provide support for or answer questions
about a specific OS to which you are trying to port. For specific questions regarding the
features and functionality of a target OS, contact the OS vendor.

Compiling, Linking, and Installing the Driver
After editing the files in the driver/OS_Layer subdirectory, you create
an executable NI-488DDK driver by compiling the ib.c file. To create the
C language interface to the driver, compile the cib.c file. Refer to the
documentation that came with the operating system and the C compiler you
are using for detailed information about compiling, linking, and installing
a new device driver. You might also find it useful to refer to the makefile
files included in the example OS_Layer subdirectories on the distribution
media.

Chapter 2 Developing Your Driver

© National Instruments Corporation 2-7 NI-488DDK Software Reference Manual

In general, you compile the ib.c and cib.c source files the same way you
would any other C source file, to produce two binary object files. If you are
implementing a user-level driver, in most cases you should link both the ib
and cib object files directly to your application program. If you are
implementing a kernel-level driver, only the cib object file should be
linked directly to your application, while the ib object file must be linked
into the operating system kernel itself. Depending on your system, you link
the ib object file into the system by either statically linking it to the object
files that make up the system kernel, and then rebooting the system, or by
executing special system commands to load the ib object file dynamically
into the system, without rebooting.

Testing and Debugging the Driver
The NI-488DDK distribution media includes an automated test program
called ibchat that you can use to verify the correct operation of a new
NI-488DDK driver. The program is written in C and is compatible with a
variety of text-based systems. The test is designed to be run between two
GPIB interfaces installed in separate NI-488 based systems, or between
two GPIB interfaces installed in a single, multitasking, NI-488 based
system.

Separate invocations of ibchat must be run on both GPIB interfaces
participating in the test, but both interfaces do not have to be controlled by
an NI-488DDK driver. Because ibchat is an NI-488 application, it can be
run using any NI-488 compatible driver, which gives you flexibility in
setting up the test. For example, for one side of the test, you could compile
and run ibchat on any of a variety of Windows or UNIX-based systems
supported by NI-488.2 drivers from National Instruments.

To use the test program, compile and link ibchat.c as you would any
other NI-488DDK application, and run the resulting executable file. This
process is described in Chapter 3, Developing Your Application. For
example, on a UNIX-based system, you might enter the following
commands to compile and run ibchat:

cc ibchat.c cib.c -o ibchat

ibchat

After startup, ibchat prompts you to designate one interface at address
0 (MA0) and the other interface at address 1 (MA1). The test supports a
number of command line options that you can use to modify the behavior

Chapter 2 Developing Your Driver

NI-488DDK Software Reference Manual 2-8 ni.com

of the test. These options are described briefly in an online help screen that
you can access by starting the program as follows:

ibchat -h

Depending on the options selected, the ibchat test runs until it completes
or until you terminate it manually. If the test encounters an error before
terminating normally, the test halts and prints out some diagnostic
information to help you determine the nature of the error.

Debugging Run-Time Errors
In addition to the ibchat diagnostic information, you can make use of an
extensive set of conditional debugging and tracing statements available in
the DDK driver source files to help identify and fix run-time errors. These
statements can be configured via compile-time and run-time flags to direct
debugging information to a system console, an internal tracing buffer in the
driver, or to an extra GPIB interface connected to a GPIB analyzer.

Console print statements are the easiest debugging statements to use, but
they are also the slowest. These statements are best suited for low-speed
testing, such as when you intend to step through the driver testing one
function at a time.

Debugging statements written to an internal trace buffer within the driver
are much faster than console print statements, and are therefore better
suited for higher speed testing of longer duration. You can retrieve the
contents of the internal trace buffer at any time by using the ibdump
extraction program, included in the NI-488DDK distribution.

You can also arrange to have the contents of the internal trace buffer output
to an unused GPIB interface as they are generated at run time. This is
another flexible option that is suitable for high-speed testing situations.
This option is especially useful when debugging a problem that is causing
the system to crash (a common problem in driver development) before the
contents of the internal trace buffer can be retrieved using ibdump.

To conditionally include the debugging statements, first set the
GPIB_DEBUG and (optionally) the GPIB_TRACE flags in the ib.c file to 1.
Once the DBG statements have been compiled into the driver, you can use
the ibpoke driver function to control the quantity and display options of
these statements at run time. The ibdump program is written in C and can
be compiled as either a separate utility or as a linkable subroutine (suitable
for use with user-level drivers) that you can call from your application
program.

Chapter 2 Developing Your Driver

© National Instruments Corporation 2-9 NI-488DDK Software Reference Manual

Documentation of Debugging Tools
For more information about the debugging options available in a particular
version of the NI-488DDK driver, refer to the definitions at the top of the
ni_suprt.h file. For information about the ibpoke function, refer to
Chapter 4, NI-488DDK Functions. For more information about the ibchat
and ibdump programs, refer to the comments in their respective C source
files. For information about other tools and techniques that may be
available to help debug your NI-488DDK driver, depending on your
development environment, refer to the documentation that came with your
operating system.

© National Instruments Corporation 3-1 NI-488DDK Software Reference Manual

3
Developing Your Application

This chapter explains how to develop a GPIB application using
NI-488DDK functions.

Using NI-488DDK Functions
NI-488DDK functions perform only rudimentary GPIB operations. These
low-level functions access the interface board directly and require you to
handle the addressing and bus management protocol. In addition to serving
as a foundation upon which you can implement higher-level functions,
these functions give you the flexibility and control to handle situations such
as the following:

• Communicating with non-compliant (non-IEEE 488.2) devices

• Altering various low-level board configurations

• Developing non-controller applications

• Managing the bus in non-typical ways

The NI-488DDK functions are compatible with the corresponding
functions of standard NI-488.2 drivers from National Instruments.
However, the NI-488DDK may not have all the functionality of a standard
NI-488.2 driver. Refer to Chapter 4, NI-488DDK Functions, for details.

Items to Include in Your Application
Items you should include in your C application programs are as follows:

• The header file ugpib.h contains prototypes for the GPIB functions
and constants that you can use in your application.

• One or more calls to the ibfind function to obtain a unit descriptor
for each GPIB board that the application uses.

• Code to check for errors after each NI-488DDK function call.

• A function to handle GPIB errors. This function takes the board offline
and closes the application. If the function is declared as:

void gpiberr (char * msg); /*function prototype*/

Chapter 3 Developing Your Application

NI-488DDK Software Reference Manual 3-2 ni.com

then your application invokes it as follows:

if (ibsta & ERR) {

gpiberr("GPIB error");

}

Checking Status with Global Variables
Each NI-488DDK function updates four global variables to reflect the
status of the board that you are using. These global status variables are the
status word (ibsta), the error variable (iberr) and the count variables
(ibcnt and ibcntl). They contain useful information about the
performance of your application. Your application should check these
variables after each GPIB call. The following sections describe each of
these global variables and how you can use them in your application.

Status Word (ibsta)
All functions update a global status word, ibsta, which contains
information about the state of the GPIB and the GPIB hardware. The value
stored in ibsta is the return value of all of the NI-488DDK functions
except ibfind. You can examine various status bits in ibsta and use that
information to make decisions about continued processing. If you check for
possible errors after each call using the ibsta ERR bit, debugging your
application is much easier.

ibsta is an integer-sized value. The least significant 16 bits of ibsta are
meaningful. A bit value of one (1) indicates that a certain condition is in
effect, and a bit value of zero (0) indicates that the condition is not in effect.

Table 3-1 shows the condition that each bit position represents and the bit
mnemonics. For a detailed explanation of each of the status conditions,
refer to Appendix B, Status Word Conditions.

Table 3-1. Status Word Layout

Mnemonic
Bit
Pos.

Hex
Value Description

ERR 15 8000 GPIB error

TIMO 14 4000 Time limit exceeded

END 13 2000 END or EOS detected

SRQI 12 1000 SRQ interrupt received

Chapter 3 Developing Your Application

© National Instruments Corporation 3-3 NI-488DDK Software Reference Manual

The application header file ugpib.h included on your distribution medium
defines each of the ibsta status bits. You can test for an ibsta status bit
being set using the bitwise and operator (& in C/C++). For example, the
ibsta ERR bit is bit 15 of ibsta. To check for a GPIB error, use the
following statement after each GPIB call as shown:

if (ibsta & ERR)

printf("GPIB error encountered");

Error Variable (iberr)
If the ERR bit is set in ibsta, a GPIB error has occurred. When an error
occurs, the error type is specified by the integer iberr. To check for a
GPIB error, use the following statement after each GPIB call:

if (ibsta & ERR)

printf("GPIB error %d encountered", iberr);

Note The value in iberr is meaningful as an error type only when the ERR bit is set in
ibsta, indicating that an error has occurred.

For more information on error codes and solutions, refer to the Debugging
Considerations section of this chapter or Appendix C, Error Codes and
Solutions.

CMPL 8 100 I/O completed

LOK 7 80 Lockout State

REM 6 40 Remote State

CIC 5 20 Controller-In-Charge

ATN 4 10 Attention is asserted

TACS 3 8 Talker

LACS 2 4 Listener

DTAS 1 2 Device Trigger State

DCAS 0 1 Device Clear State

Table 3-1. Status Word Layout (Continued)

Mnemonic
Bit
Pos.

Hex
Value Description

Chapter 3 Developing Your Application

NI-488DDK Software Reference Manual 3-4 ni.com

Count Variables (ibcnt and ibcntl)
The count variables are updated after each read, write, or command
function. ibcnt is an integer value and ibcntl is a long integer value.
As implemented on most modern systems today, ibcnt and ibcntl are
both 32-bit integers. On some older systems, such as MS-DOS, ibcnt is a
16-bit integer; on some newer systems, ibcntl is a 64-bit integer. For
cross-platform compatibility, all applications should use ibcntl. If you
are reading data, the count variables indicate the number of bytes read. If
you are sending data or commands, the count variables reflect the number
of bytes sent.

In your application you can use the count variables to null-terminate an
ASCII string of data received from an instrument. For example, if data is
received in an array of characters, you can use ibcntl to null-terminate the
array and print the measurement on the screen as follows:

char rdbuf[512];

ibrd (ud, rdbuf, 20L);

if (!(ibsta & ERR)){

rdbuf[ibcntl] = '\0';

printf ("Read: %s\n", rdbuf);

}

else {

error();

}

Compiling and Linking Your Application
To access the functions in the NI-488DDK driver from your application,
you must link your application to the C language interface defined by the
cib.c file. If you are using a user-level implementation of the DDK driver,
in most cases you must also link your application to the low-level driver
module itself, defined by the ib.c file.

The steps for compiling and linking your application program vary
depending on your operating system and development environment. For
example, the commands you might use to build and run an application on a
UNIX-based system with a kernel-level driver are as follows:

cc my_application.c cib.c -o my_application

my_application

Chapter 3 Developing Your Application

© National Instruments Corporation 3-5 NI-488DDK Software Reference Manual

Alternatively, if many applications will be using the NI-488DDK driver on
the sample UNIX system, you can compile the cib.c file separately and
place it in a library for all applications to use with the following commands:

cc -c cib.c

ar r /usr/lib/libgpib.a cib.o

cc my_application.c -lgpib -o my_application

my_application

To access the routines in the sample IEEE 488.2 application library on the
UNIX-based system, you would compile and link the ni4882.c file to
your application as follows:

cc my_application.c ni4882.c -lgpib -o my_application

my_application

As with the standard cib module, if you desired to make the IEEE 488.2
library available to a number of applications, you could compile and
archive the ni4882.c file in a library, rather than compiling the C source
file with your application each time.

For specific instructions on the compiling and linking options available on
your particular system, refer to the documentation that came with the
system.

Debugging Considerations
This section contains typical errors you may encounter and some
considerations for debugging your application.

Using the Global Status Variables
After each function call to your NI-488DDK driver, ibsta, iberr,
ibcnt, and ibcntl are updated before the call returns to your application.
You should check for an error after each GPIB call. Refer to the Checking
Status with Global Variables section of this chapter for more information
about how to use these variables within your program to automatically
check for errors.

After you determine which GPIB call is failing and note the corresponding
values of the global variables, refer to Appendix B, Status Word
Conditions, and Appendix C, Error Codes and Solutions. These
appendices can help you interpret the state of the driver.

Chapter 3 Developing Your Application

NI-488DDK Software Reference Manual 3-6 ni.com

Configuration Errors
Some applications require customized configuration of the GPIB driver.
For example, you might want to terminate reads on a special end-of-string
character, or you might require secondary addressing. In these cases, you
can temporarily reconfigure the driver while your application is running
using the ibeos and ibsad functions.

Refer to the descriptions of these functions and others in Chapter 4,
NI-488DDK Functions, for more information.

Timing Errors
In some cases, your application might fail because it is issuing the
NI-488DDK calls too quickly for your device to process and respond to
them. This problem can also result in corrupted or incomplete data.

A well behaved IEEE 488 device should hold off handshaking and set the
appropriate transfer rate. If your device is not well behaved, you can test for
and resolve the timing error by single-stepping through your program and
inserting finite delays between each GPIB call. One way to do this is to
have your device communicate its status whenever possible. Although this
method is not possible with many devices, it is usually the best option. Your
delays are controlled by the device and your application can adjust itself
and work independently on any platform. Other delay mechanisms might
cause varying delay times on different platforms.

Communication Errors

Repeat Addressing
Devices adhering to the IEEE 488.2 standard should remain in their current
state until specific commands are sent across the GPIB to change their
state. However, some devices require GPIB addressing before any GPIB
activity. Therefore, you might need to make additional calls to ibcmd in
your application to perform repeat addressing if your device does not
remain in its currently addressed state.

Termination Method
You should learn the data termination method that your devices use. By
default, your NI-488DDK software sends EOI on writes and terminates
reads on EOI or a specific byte count. If you send a command string to your
device and it does not respond, it might be because it does not recognize the

Chapter 3 Developing Your Application

© National Instruments Corporation 3-7 NI-488DDK Software Reference Manual

end of the command. You might need to send a termination message such
as CR LF after a write command as follows:

ibwrt(ud,"COMMAND\x0D\x0A",9);

© National Instruments Corporation 4-1 NI-488DDK Software Reference Manual

4
NI-488DDK Functions

This chapter lists the NI-488DDK functions and describes the purpose, format, input and
output parameters, and possible errors for each function.

Legend

Function Names
The functions in this chapter are listed alphabetically.

Purpose
Each function description includes a brief statement of the purpose of the function.

Format
The format section describes the format of each function in the C programming language.

Input and Output
The input and output parameters for each function are listed. Function Return describes the
return value of the function.

Description
The description section gives details about the purpose and effect of each function.

Examples
Some function descriptions include sample code showing how to use the function. For more
detailed and complete examples, refer to the source code support files ibchat.c and
ni4882.c that are included with your NI-488DDK software in the util/ directory.

Possible Errors
Each function description includes a list of errors that could occur when it is invoked.

Chapter 4 NI-488DDK Functions — List of NI-488DDK Functions

NI-488DDK Software Reference Manual 4-2 ni.com

List of NI-488DDK Functions
Table 4-1 contains an alphabetical list of the NI-488DDK functions.

Table 4-1. NI-488DDK Functions

Function Purpose

ibask Return information about software configuration parameters

ibcac Become Active Controller

ibcmd Send GPIB commands

ibconfig Change the software configuration parameters

ibdma Enable or disable DMA

ibeos Configure the end-of-string (EOS) termination mode or character

ibeot Enable or disable the automatic assertion of the GPIB EOI line at the
end of write I/O operations

ibfind Open and initialize a GPIB board

ibgts Go from Active Controller to Standby

ibist Set or clear the board individual status bit for parallel polls

iblines Return the status of the eight GPIB control lines

ibln Check for the presence of a device on the bus

ibloc Go to local

ibonl Place the interface board online or offline

ibpad Change the primary address

ibpoke Change internal driver characteristics

ibppc Parallel poll configure

ibrd Read data into a user buffer

ibrpp Conduct a parallel poll

ibrsc Request or release system control

ibrsv Request service and change the serial poll status byte

ibsad Change or disable the secondary address

ibsic Assert interface clear

ibsre Set or clear the Remote Enable (REN) line

ibtmo Change or disable the I/O timeout period

ibwait Wait for GPIB events

ibwrt Write data from a user buffer

Chapter 4 NI-488DDK Functions — IBASK

© National Instruments Corporation 4-3 NI-488DDK Software Reference Manual

IBASK

Purpose
Return information about software configuration parameters.

Format
int ibask (int ud, int option, int *value)

Note This function may not be available in all versions of NI-488DDK.

Input
ud A board unit descriptor
option Selects the configuration parameter

Output
value Value of the configuration parameter
Function Return The value of ibsta

Description
ibask returns the current value of various configuration parameters for the board. The
current value of the selected configuration item is returned in the integer pointed to by value.
Table 4-2 lists the valid configuration parameter options for ibask.

Possible Errors
EARG option is not a valid configuration parameter.
ECAP option is not available in the NI-488DDK.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Table 4-2. ibask Board Configuration Parameter Options

Options
(Constants)

Options
(Values) Returned Information

IbaHSCableLength 0x001F 0 = High-speed handshaking is disabled.

1 to 15 = The number of meters of GPIB
cable in your system. The
NI-488.2 software uses this
information to select the
appropriate timing in the
high-speed handshaking mode.

Chapter 4 NI-488DDK Functions — IBCAC

NI-488DDK Software Reference Manual 4-4 ni.com

IBCAC

Purpose
Become Active Controller.

Format
int ibcac (int ud, int v)

Input
ud A board unit descriptor
v Determines if control is to be taken asynchronously or

synchronously

Output
Function Return The value of ibsta

Description
Using ibcac, the designated GPIB board attempts to become the Active Controller by
asserting ATN. If v is zero, the GPIB board takes control asynchronously; if v is non-zero,
the GPIB board takes control synchronously. Before you call ibcac, the GPIB board must
already be CIC. To make the board CIC, use the ibsic function.

To take control synchronously, the GPIB board attempts to assert the ATN signal without
corrupting transferred data. If this is not possible, the board takes control asynchronously.

To take control asynchronously, the GPIB board asserts ATN immediately without regard for
any data transfer currently in progress.

Most applications do not need to use ibcac. Functions that require ATN to be asserted, such
as ibcmd, do so automatically.

Possible Errors
EARG ud is valid but does not refer to an interface board.
ECIC The interface board is not Controller-In-Charge.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions — IBCMD

© National Instruments Corporation 4-5 NI-488DDK Software Reference Manual

IBCMD

Purpose
Send GPIB commands.

Format
int ibcmd (int ud, void *cmdbuf, long count)

Input
ud A board unit descriptor
cmdbuf Buffer of command bytes to send
count Number of command bytes to send

Output
Function Return The value of ibsta

Description
ibcmd sends count bytes from cmdbuf over the GPIB as command bytes (interface
messages). The number of command bytes transferred is returned in the global variable,
ibcntl. Refer to Table A-1, Multiline Interface Messages, for a list of the defined interface
messages.

Command bytes configure the state of the GPIB, such as addressing devices to listen or talk.

Possible Errors
EABO The timeout period expired before all of the command bytes were sent.
EARG ud is valid but does not refer to an interface board.
ECIC The interface board is not Controller-In-Charge.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.
ENOL No Listeners are on the GPIB.

Chapter 4 NI-488DDK Functions — IBCONFIG

NI-488DDK Software Reference Manual 4-6 ni.com

IBCONFIG

Purpose
Change the software configuration parameters.

Format
int ibconfig (int ud, int option, int value)

Input
ud A board unit descriptor
option Selects the configuration parameter
value Value of the configuration parameter

Output
Function Return The value of ibsta

Description
ibconfig alters the current value of the configuration item to the value for the selected
board. option may be any of the defined constants in Table 4-3, and value must be valid
for the parameter you are configuring. The previous setting of the configured item is returned
in iberr.

Possible Errors
EARG option is not a valid configuration parameter.
ECAP option is not available in the NI-488DDK.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Table 4-3. ibconfig Board Configuration Parameter Options

Options
(Constants)

Options
(Values) Returned Information

IbcHSCableLength 0x001F 0 = High-speed handshaking is disabled.

1 to 15 = The number of meters of GPIB
cable in your system. The
NI-488.2 software uses this
information to select the
appropriate timing in the
high-speed handshaking mode.

(Default: 15)

Chapter 4 NI-488DDK Functions — IBDMA

© National Instruments Corporation 4-7 NI-488DDK Software Reference Manual

IBDMA

Purpose
Enable or disable DMA.

Format
int ibdma (int ud, int v)

Input
ud A board unit descriptor
v Enables or disables DMA

Output
Function Return The value of ibsta

Description
ibdma enables or disables DMA operation. If v is non-zero, DMA transfers between the
GPIB board and memory are used for read and write operations. If v is zero, programmed I/O
is used.

The assignment made by this function remains in effect until ibdma is called again, the
ibonl or ibfind function is called, or the system is restarted.

When ibdma is called and an error does not occur, the previous value of v is stored in iberr.

Possible Errors
ECAP option is not available in the NI-488DDK.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions — IBEOS

NI-488DDK Software Reference Manual 4-8 ni.com

IBEOS

Purpose
Configure the end-of-string (EOS) termination mode or character.

Format
int ibeos (int ud, int v)

Input
ud A board unit descriptor
v EOS mode and character information

Output
Function Return The value of ibsta

Description
ibeos configures the EOS termination mode or EOS character for the board. The parameter
v describes the new end-of-string (EOS) configuration to use. If v is zero, then the EOS
configuration is disabled. Otherwise, the low byte is the EOS character and the upper byte
contains flags which define the EOS mode.

Note Defining an EOS byte does not cause the driver to automatically send that byte at
the end of write I/O. Your application is responsible for placing the EOS byte at the end of
the data strings that it defines.

Table 4-4 describes the different EOS configurations and the corresponding values of v. If no
error occurs during the call, the value of the previous EOS setting is returned in iberr.

Table 4-4. EOS Configurations

Value of v

Bit Configuration High Byte Low Byte

A Terminate read when EOS is detected. 00000100 EOS character

B Set EOI with EOS on write function. 00001000 EOS character

C Compare all 8 bits of EOS byte rather than
low 7 bits (all read and write functions).

00010000 EOS character

Chapter 4 NI-488DDK Functions — IBEOS

© National Instruments Corporation 4-9 NI-488DDK Software Reference Manual

IBEOS
(Continued)

Configuration bits A and C determine how to terminate read I/O operations. If bit A is set and
bit C is clear, then a read ends when a byte that matches the low seven bits of the EOS
character is received. If bits A and C are both set, then a read ends when a byte that matches
all eight bits of the EOS character is received.

Configuration bits B and C determine when a write I/O operation asserts the GPIB EOI line.
If bit B is set and bit C is clear, then EOI is asserted when the written character matches the
low seven bits of the EOS character. If bits B and C are both set, then EOI is asserted when
the written character matches all eight bits of the EOS character.

For more information on the termination of I/O operations, refer to Chapter 5, GPIB
Programming Techniques.

Examples
ibeos (ud, 0x140A); /* Configure the software to end reads on

 newline character (hex 0A) for the unit

 descriptor, ud */

ibeos (ud, 0x180A); /* Configure the software to assert the GPIB

 EOI line whenever the newline character

 (hex 0A) is written out by the unit

 descriptor, ud */

Possible Errors
EARG The high byte of v contains invalid bits.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions — IBEOT

NI-488DDK Software Reference Manual 4-10 ni.com

IBEOT

Purpose
Enable or disable the automatic assertion of the GPIB EOI line at the end of write I/O
operations.

Format
int ibeot (int ud, int v)

Input
ud A board unit descriptor
v Enables or disables the end of transmission assertion of EOI

Output
Function Return The value of ibsta

Description
ibeot enables or disables the assertion of the EOI line at the end of write I/O operations for
the board ud describes. If v is non-zero, then EOI is asserted when the last byte of a GPIB
write is sent. If v is zero, then nothing occurs when the last byte is sent. If no error occurs
during the call, then the previous value of EOT is returned in iberr.

For more information on the termination of I/O operations, refer to Chapter 5, GPIB
Programming Techniques.

Possible Errors
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions — IBFIND

© National Instruments Corporation 4-11 NI-488DDK Software Reference Manual

IBFIND

Purpose
Open and initialize a GPIB board descriptor.

Format
int ibfind (char *udname)

Input
udname A GPIB board name

Output
Function Return The board descriptor, or -1

Description
ibfind acquires a descriptor for a GPIB board; this board descriptor can be used in
subsequent NI-488DDK functions.

ibfind performs the equivalent of an ibonl 1 to initialize the board descriptor. The unit
descriptor that ibfind returns remains valid until you use ibonl 0 to put the board offline.

If ibfind is unable to get a valid descriptor, -1 is returned; the ERR bit is set in ibsta and
iberr contains EDVR.

Possible Errors
EDVR Either udname is not recognized as a board name or the NI-488DDK driver is not

installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions — IBGTS

NI-488DDK Software Reference Manual 4-12 ni.com

IBGTS

Purpose
Go from Active Controller to Standby.

Format
int ibgts (int ud, int v)

Input
ud A board unit descriptor
v Determines whether to perform acceptor handshaking

Output
Function Return The value of ibsta

Description
ibgts causes the GPIB board at ud to go to Standby Controller and the GPIB ATN line to be
unasserted. If v is non-zero, acceptor handshaking or shadow handshaking is performed until
END occurs or until ATN is reasserted by a subsequent ibcac call. With this option, the
GPIB board can participate in data handshake as an acceptor without actually reading data.
If END is detected, the interface board enters a Not Ready For Data (NRFD) handshake
holdoff state which results in hold off of subsequent GPIB transfers. If v is 0, no acceptor
handshaking or holdoff is performed.

Before performing an ibgts with shadow handshake, call the ibeos function to establish
proper EOS modes.

For details on the IEEE-488.1 handshake protocol, refer to the ANSI/IEEE Standard
488.1-1987 document.

Possible Errors
EADR v is non-zero, and either ATN is low or the interface board is a Talker or Listener.
EARG ud is valid but does not refer to an interface board.
ECIC The interface board is not Controller-In-Charge.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions — IBIST

© National Instruments Corporation 4-13 NI-488DDK Software Reference Manual

IBIST

Purpose
Set or clear the board individual status bit for parallel polls.

Format
int ibist (int ud, int v)

Input
ud A board unit descriptor
v Indicates whether to set or clear the ist bit

Output
Function Return The value of ibsta

Description
ibist sets the interface board ist (individual status) bit according to v. If v is zero, the ist
bit is cleared; if v is non-zero, the ist bit is set. The previous value of the ist bit is returned
in iberr.

For more information on parallel polling, refer to Chapter 5, GPIB Programming Techniques.

Possible Errors
EARG ud is valid but does not refer to an interface board.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions — IBLINES

NI-488DDK Software Reference Manual 4-14 ni.com

IBLINES

Purpose
Return the status of the eight GPIB control lines.

Format
int iblines (int ud, short *clines)

Input
ud A board unit descriptor

Output
clines Returns GPIB control line state information
Function Return The value of ibsta

Description
iblines returns the state of the GPIB control lines in clines. The low-order byte
(bits 0 through 7) of clines contains a mask indicating the capability of the GPIB interface
board to sense the status of each GPIB control line. The upper byte (bits 8 through 15)
contains the GPIB control line state information. The following is a pattern of each byte.

To determine if a GPIB control line is asserted, first check the appropriate bit in the lower byte
to determine if the line can be monitored. If the line can be monitored (indicated by a 1 in the
appropriate bit position), then check the corresponding bit in the upper byte. If the bit is set
(1), the corresponding control line is asserted. If the bit is clear (0), the control line is
unasserted.

7 6 5 4 3 2 1 0

EOI ATN SRQ REN IFC NRFD NDAC DAV

Chapter 4 NI-488DDK Functions — IBLINES

© National Instruments Corporation 4-15 NI-488DDK Software Reference Manual

IBLINES
(Continued)

Example
short lines;

iblines (ud, &lines);

if (lines & ValidREN) { /* check to see if REN is asserted */

if (lines & BusREN) {

printf ("REN is asserted");

}

}

Possible Errors
EARG ud is valid but does not refer to an interface board.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions — IBLN

NI-488DDK Software Reference Manual 4-16 ni.com

IBLN

Purpose
Check for the presence of a device on the bus.

Format
int ibln (int ud, int pad, int sad, short *listen)

Input
ud A board unit descriptor
pad The primary GPIB address of the device
sad The secondary GPIB address of the device

Output
listen Indicates if a device is present or not
Function Return The value of ibsta

Description
ibln determines whether there is a listening device at the GPIB address designated by the
pad and sad parameters. If a Listener is detected, a non-zero value is returned in listen.
If no Listener is found, zero is returned.

The pad parameter can be any valid primary address (a value between 0 and 30). The sad
parameter can be any valid secondary address (a value between 96 to 126), or one of the
constants NO_SAD or ALL_SAD. The constant NO_SAD designates that no secondary address is
to be tested (only a primary address is tested). The constant ALL_SAD designates that all
secondary addresses are to be tested.

Possible Errors
EARG Either the pad or sad argument is invalid.
ECIC The interface board is not Controller-In-Charge.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions — IBLOC

© National Instruments Corporation 4-17 NI-488DDK Software Reference Manual

IBLOC

Purpose
Go to Local.

Format
int ibloc (int ud)

Input
ud A board unit descriptor

Output
Function Return The value of ibsta

Description
ibloc places the board in local mode if it is not in a lockout state. The board is in a lockout
state if LOK appears in the status word ibsta. If the board is in a lockout state, the call has
no effect.

The ibloc function is used to simulate a front panel RTL (Return to Local) switch if the
computer is used as an instrument.

Possible Errors
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions — IBONL

NI-488DDK Software Reference Manual 4-18 ni.com

IBONL

Purpose
Place the interface board online or offline.

Format
int ibonl (int ud, int v)

Input
ud A board unit descriptor
v Indicates whether the board is to be taken online or offline

Output
Function Return The value of ibsta

Description
ibonl resets the board and places all its software configuration parameters in their
pre-configured state. In addition, if v is zero, the interface board is taken offline. If v is
non-zero, the interface board is left operational, or online.

If an interface board is taken offline, the board descriptor (ud) is no longer valid. You must
execute an ibfind to access the board again.

Possible Errors
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions — IBPAD

© National Instruments Corporation 4-19 NI-488DDK Software Reference Manual

IBPAD

Purpose
Change the primary address.

Format
int ibpad (int ud, int v)

Input
ud A board unit descriptor
v GPIB primary address

Output
Function Return The value of ibsta

Description
ibpad sets the primary GPIB address of the board to v, an integer ranging from 0 to 30. If no
error occurs during the call, then iberr contains the previous GPIB primary address.

Possible Errors
EARG v is not a valid primary GPIB address; it must be in the range 0 to 30.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions — IBPOKE

NI-488DDK Software Reference Manual 4-20 ni.com

IBPOKE

Purpose
Change internal driver characteristics.

Format
int ibpoke (int ud, int option, int v)

Input
ud A board unit descriptor
option A parameter that selects the characteristic to be changed
v The value to which the selected characteristic is to be changed

Output
Function Return The value of ibsta

Description
ibpoke modifies miscellaneous internal characteristics within the NI-488DDK driver,
such as turning on or off certain types of debugging statements. The operations that can
be performed with ibpoke can vary with different NI-488 drivers. This function is intended
for driver developer use only and should generally not be used in end-user application
development. For these reasons, ibpoke is not documented in standard NI-488 manual sets.

For the specific options and values supported by a particular version of driver, refer to the
source code for ibpoke in the files ni488.c and ni_suprt.c.

Examples
ibpoke (ud, 1, 1); /* Turn all driver debugging statements ON */

ibpoke (ud, 1, 0); /* Turn all driver debugging statements OFF */

Possible Errors
EARG Either option or v is invalid.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions — IBPPC

© National Instruments Corporation 4-21 NI-488DDK Software Reference Manual

IBPPC

Purpose
Parallel poll configure.

Format
int ibppc (int ud, int v)

Input
ud A board unit descriptor
v Parallel poll enable/disable (PPE/PPD) value

Output
Function Return The value of ibsta

Description
ibppc performs a local parallel poll configuration on the interface board using the parallel
poll configuration value v. Valid parallel poll messages are 96 to 126 (hex 60 to hex 7E) or
zero to send PPD. If no error occurs during the call, then iberr contains the previous value
of the local parallel poll configuration.

For more information on parallel polling, refer to Chapter 5, GPIB Programming Techniques.

Possible Errors
EARG v does not contain a valid parallel poll enable (PPE) or parallel poll disable (PPD)

message.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions — IBRD

NI-488DDK Software Reference Manual 4-22 ni.com

IBRD

Purpose
Read data into a user buffer.

Format
int ibrd (int ud, void *rdbuf, long count)

Input
ud A board unit descriptor
count Number of bytes to be read from the GPIB

Output
rdbuf Address of buffer into which data is read
Function Return The value of ibsta

Description
ibrd reads up to count bytes of data and places the data into the buffer specified by rdbuf.
ibrd assumes that the GPIB is already properly addressed. The operation terminates
normally when count bytes have been received or END is received. The operation terminates
with an error if the transfer could not complete within the timeout period or, if the board is
not CIC, the CIC sends a Device clear on the GPIB. The actual number of bytes transferred
is returned in the global variable ibcntl.

Possible Errors
EABO Either count bytes or END was not received within the timeout period or a Device

Clear message was received after the read operation began.
EADR The GPIB is not correctly addressed; use ibcmd to address the GPIB.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions — IBRPP

© National Instruments Corporation 4-23 NI-488DDK Software Reference Manual

IBRPP

Purpose
Conduct a parallel poll.

Format
int ibrpp (int ud, char *ppr)

Input
ud A board unit descriptor

Output
ppr Parallel poll response byte
Function Return The value of ibsta

Description
ibrpp parallel polls all the devices on the GPIB. The result of this poll is returned in ppr.

For more information on parallel polling, refer to Chapter 5, GPIB Programming Techniques.

Possible Errors
ECIC The interface board is not Controller-In-Charge.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions — IBRSC

NI-488DDK Software Reference Manual 4-24 ni.com

IBRSC

Purpose
Request or release system control.

Format
int ibrsc (int ud, int v)

Input
ud A board unit descriptor
v Determines if system control is to be requested or released

Output
Function Return The value of ibsta

Description
ibrsc requests or releases the capability to send Interface Clear (IFC) and Remote Enable
(REN) messages. If v is zero, the board releases system control, and functions requiring
System Controller capability are not allowed. If v is non-zero, functions requiring System
Controller capability are subsequently allowed. If no error occurs during the call, then iberr
contains the previous System Controller state of the board.

Possible Errors
EARG ud is a valid descriptor but does not refer to a board.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions — IBRSV

© National Instruments Corporation 4-25 NI-488DDK Software Reference Manual

IBRSV

Purpose
Request service and change the serial poll status byte.

Format
int ibrsv (int ud, int v)

Input
ud A board unit descriptor
v Serial poll status byte

Output
Function Return The value of ibsta

Description
ibrsv is used to request service from the Controller and to provide the Controller with an
application-dependent status byte when the Controller serial polls the GPIB board.

The value v is the status byte that the GPIB board returns when serial polled by the
Controller-In-Charge. If bit 6 (hex 40) is set in v, the GPIB board requests service from the
Controller by asserting the GPIB SRQ line. When ibrsv is called and an error does not occur,
the previous status byte is returned in iberr.

Possible Errors
EARG ud is a valid descriptor but does not refer to a board.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions — IBSAD

NI-488DDK Software Reference Manual 4-26 ni.com

IBSAD

Purpose
Change or disable the secondary address.

Format
int ibsad (int ud, int v)

Input
ud A board unit descriptor
v GPIB secondary address

Output
Function Return The value of ibsta

Description
ibsad changes the secondary GPIB address of the given board to v, an integer in the range
96 to 126 (hex 60 to hex 7E) or zero. If v is zero, secondary addressing is disabled. If no error
occurs during the call, then the previous value of the GPIB secondary address is returned in
iberr.

Possible Errors
EARG v is non-zero and outside the legal range 96 to 126.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions — IBSIC

© National Instruments Corporation 4-27 NI-488DDK Software Reference Manual

IBSIC

Purpose
Assert interface clear.

Format
int ibsic (int ud)

Input
ud A board unit descriptor

Output
Function Return The value of ibsta

Description
ibsic asserts the GPIB interface clear (IFC) line for at least 100 µs if the GPIB board is
System Controller. This initializes the GPIB and makes the interface board CIC and Active
Controller with ATN asserted.

The IFC signal resets only the GPIB interface functions of bus devices and not the internal
device functions. Consult your device documentation to determine how to reset the internal
functions of your device.

Possible Errors
EARG ud is a valid descriptor but does not refer to a board.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.
ESAC The board does not have System Controller capability.

Chapter 4 NI-488DDK Functions — IBSRE

NI-488DDK Software Reference Manual 4-28 ni.com

IBSRE

Purpose
Set or clear the Remote Enable line.

Format
int ibsre (int ud, int v)

Input
ud A board unit descriptor
v Indicates whether to set or clear the REN line

Output
Function Return The value of ibsta

Description
If v is non-zero, the GPIB Remote Enable (REN) line is asserted. If v is zero, REN is
unasserted. The previous value of REN is returned in iberr.

Devices use REN to choose between local and remote modes of operation. A device should
not actually enter remote mode until it receives its listen address.

Possible Errors
EARG ud is a valid descriptor but does not refer to a board.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.
ESAC The board does not have System Controller capability.

Chapter 4 NI-488DDK Functions — IBTMO

© National Instruments Corporation 4-29 NI-488DDK Software Reference Manual

IBTMO

Purpose
Change or disable the timeout period.

Format
int ibtmo (int ud, int v)

Input
ud A board unit descriptor
v Timeout duration code

Output
Function Return The value of ibsta

Description
ibtmo sets the timeout period of the board to v. The timeout period is used to select the
maximum duration allowed for an I/O operation (for example, ibrd and ibwrt) or for an
ibwait operation with TIMO in the wait mask. If the operation does not complete before the
timeout period elapses, then the operation is aborted and TIMO is returned in ibsta. Refer
to Table 4-5 for a list of valid timeout values. These timeout values represent the minimum
timeout period. The actual period may be longer.

Chapter 4 NI-488DDK Functions — IBTMO

NI-488DDK Software Reference Manual 4-30 ni.com

IBTMO
(Continued)

Possible Errors
EARG v is invalid.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Table 4-5. Timeout Code Values

Constant Value of v Minimum Timeout

TNONE 0 Disabled/no timeout

T10us 1 10 µs

T30us 2 30 µs

T100us 3 100 µs

T300us 4 300 µs

T1ms 5 1 ms

T3ms 6 3 ms

T10ms 7 10 ms

T30ms 8 30 ms

T100ms 9 100 ms

T300ms 10 300 ms

T1s 11 1 s

T3s 12 3 s

T10s 13 10 s

T30s 14 30 s

T100s 15 100 s

T300s 16 300 s

T1000s 17 1,000 s

Chapter 4 NI-488DDK Functions — IBWAIT

© National Instruments Corporation 4-31 NI-488DDK Software Reference Manual

IBWAIT

Purpose
Wait for GPIB events.

Format
int ibwait (int ud, int mask)

Input
ud A board unit descriptor
mask Bit mask of GPIB events to wait for

Output
Function Return The value of ibsta

Description
ibwait monitors the events that mask specifies and delays processing until one or more of
the events occurs. If the wait mask is zero, ibwait returns immediately with the updated
ibsta status word. If TIMO is set in the wait mask, ibwait returns when the timeout period
has elapsed, if one or more of the other specified events have not already occurred. If TIMO
is not set in the wait mask, then ibwait waits indefinitely for one or more of the specified
events to occur. The existing ibwait mask bits are identical to the ibsta bits, and they are
described in Table 4-6. You can configure the timeout period using the ibtmo function.

Chapter 4 NI-488DDK Functions — IBWAIT

NI-488DDK Software Reference Manual 4-32 ni.com

IBWAIT
(Continued)

Possible Errors
EARG The bit set in mask is invalid.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Table 4-6. Wait Mask Layout

Mnemonic
Bit
Pos. Hex Value Description

TIMO 14 4000 Use the timeout period (see ibtmo) to limit
the wait period

END 13 2000 END or EOS is detected

SRQI 12 1000 SRQ is asserted

CMPL 8 100 I/O completed

LOK 7 80 GPIB board is in Lockout State

REM 6 40 GPIB board is in Remote State

CIC 5 20 GPIB board is CIC

ATN 4 10 Attention is asserted

TACS 3 8 GPIB board is Talker

LACS 2 4 GPIB board is Listener

DTAS 1 2 GPIB board is in Device Trigger State

DCAS 0 1 GPIB board is in Device Clear State

Chapter 4 NI-488DDK Functions — IBWRT

© National Instruments Corporation 4-33 NI-488DDK Software Reference Manual

IBWRT

Purpose
Write data from a user buffer.

Format
int ibwrt (int ud, void *wrtbuf, long count)

Input
ud A board unit descriptor
wrtbuf Address of the buffer containing the bytes to write
count Number of bytes to be written

Output
Function Return The value of ibsta

Description
ibwrt writes count bytes of data from the buffer specified by wrtbuf; ibwrt assumes that
the GPIB is already properly addressed. The operation terminates normally when count
bytes have been sent. The operation terminates with an error if count bytes could not be sent
within the timeout period or, if the board is not CIC, the CIC sends Device Clear on the GPIB.
The actual number of bytes transferred is returned in the global variable ibcntl.

Possible Errors
EABO Either count bytes were not sent within the timeout period, or a Device Clear

message was received after the write operation began.
EADR The GPIB is not correctly addressed; use ibcmd to address the GPIB.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.
ENOL No Listeners were detected on the bus.

© National Instruments Corporation 5-1 NI-488DDK Software Reference Manual

5
GPIB Programming Techniques

This chapter describes techniques for using some NI-488DDK functions in
your application.

For more detailed information about each function, refer to Chapter 4,
NI-488DDK Functions.

Termination of Data Transfers
GPIB data transfers are terminated either when the GPIB EOI line is
asserted with the last byte of a transfer or when a preconfigured
end-of-string (EOS) character is transmitted. By default, the NI-488DDK
driver asserts EOI with the last byte of writes and the EOS modes are
disabled.

You can use the ibeot function to enable or disable the end of transmission
(EOT) mode. If EOT mode is enabled, the NI-488DDK driver asserts the
GPIB EOI line when the last byte of a write is sent out on the GPIB. If it is
disabled, the EOI line is not asserted with the last byte of a write.

You can use the ibeos function to enable, disable, or configure the EOS
modes. EOS mode configuration includes the following information:

• A 7-bit or 8-bit EOS byte

• EOS comparison method—This indicates whether the EOS byte has
seven or eight significant bits. For a 7-bit EOS byte, the eighth bit of
the EOS byte is ignored.

• EOS write method—If you enable this, the NI-488DDK driver
automatically asserts the GPIB EOI line when the EOS byte is written
to the GPIB. If the buffer passed into an ibwrt call contains five
occurrences of the EOS byte, the EOI line is asserted as each of the five
EOS bytes are written to the GPIB. If an ibwrt buffer does not contain
an occurrence of the EOS byte, the EOI line is not asserted (unless the
EOT mode is enabled, in which case the EOI line is asserted with the
last byte of the write).

• EOS read method—If you enable this, the NI-488DDK driver
terminates ibrd calls when the EOS byte is detected on the GPIB or

Chapter 5 GPIB Programming Techniques

NI-488DDK Software Reference Manual 5-2 ni.com

when the GPIB EOI line is asserted or when the specified count is
reached. If you disable the EOS read method, ibrd calls terminate
only when the GPIB EOI line is asserted or the specified count has
been read.

Waiting for GPIB Conditions
You can use the ibwait function to obtain the current ibsta value or to
suspend your application until a specified condition occurs on the GPIB. If
you use ibwait with a parameter of zero, it immediately updates ibsta
and returns. If you want to use ibwait to wait for one or more events to
occur, then pass a wait mask to the function. The wait mask should always
include the TIMO event; otherwise, your application is suspended
indefinitely until one of the wait mask events occurs.

Talker/Listener Applications
Although designed for Controller-In-Charge applications, you can also use
the NI-488DDK software in most non-Controller situations. These
situations are known as Talker/Listener applications because the interface
board is not the GPIB Controller.

A Talker/Listener application typically uses ibwait with a mask of 0 to
monitor the status of the interface board. Then, based on the status bits set
in ibsta, the application takes whatever action is appropriate. For
example, the application could monitor the status bits TACS (Talker Active
State) and LACS (Listener Active State) to determine when to send data to
or receive data from the Controller. The application could also monitor the
DCAS (Device Clear Active State) and DTAS (Device Trigger Active
State) bits to determine if the Controller has sent the device clear (DCL or
SDC) or trigger (GET) messages to the interface board. If the application
detects a device clear from the Controller, it might reset the internal state of
message buffers. If it detects a trigger message from the Controller, the
application might begin an operation such as taking a voltage reading if the
application is actually acting as a voltmeter.

Serial Polling
You can use serial polling to obtain specific information from GPIB
devices when they request service. When the GPIB SRQ line is asserted, it
signals the Controller that a service request is pending. The Controller must
then determine which device asserted the SRQ line and respond

Chapter 5 GPIB Programming Techniques

© National Instruments Corporation 5-3 NI-488DDK Software Reference Manual

accordingly. The most common method for SRQ detection and servicing is
the serial poll. This section describes how you can set up your application
to detect and respond to service requests from GPIB devices.

Service Requests from IEEE 488 Devices
IEEE 488 devices request service from the GPIB Controller by asserting
the GPIB SRQ line. When the Controller acknowledges the SRQ, it serial
polls each open device on the bus to determine which device requested
service. Any device requesting service returns a status byte with bit 6 set
and then unasserts the SRQ line. Devices not requesting service return a
status byte with bit 6 cleared. Manufacturers of IEEE 488 devices use lower
order bits to communicate the reason for the service request or to
summarize the state of the device.

Service Requests from IEEE 488.2 Devices
The IEEE 488.2 standard refined the bit assignments in the status byte. In
addition to setting bit 6 when requesting service, IEEE 488.2 devices also
use two other bits to specify their status. Bit 4, the Message Available bit
(MAV), is set when the device is ready to send previously queried data.
Bit 5, the Event Status bit (ESB), is set if one or more of the enabled
IEEE 488.2 events occurs. These events include power-on, user request,
command error, execution error, device dependent error, query error,
request control, and operation complete. The device can assert SRQ when
ESB or MAV are set, or when a manufacturer-defined condition occurs.

SRQ and Serial Polling with NI-488DDK Functions
The 488.2 application library included with the NI-488DDK driver
contains some high-level routines that you can use to conduct SRQ
servicing and serial polling. Routines pertinent to SRQ servicing and serial
polling are ni4882_ReadStatusByte, ni4882_TestSRQ, and
ni4882_WaitSRQ.

ni4882_ReadStatusByte serial polls a single device and returns its
status byte.

ni4882_TestSRQ determines whether the SRQ line is asserted or
unasserted, and returns to the caller immediately.

ni4882_WaitSRQ is similar to ni4882_TestSRQ, except that
ni4882_WaitSRQ suspends the application until either SRQ is asserted or
the timeout period is exceeded.

Chapter 5 GPIB Programming Techniques

NI-488DDK Software Reference Manual 5-4 ni.com

You can also use the IEEE 488.2 routines mentioned in this section to
construct your own SRQ servicing routines using the low-level functions
of the NI-488DDK driver. Refer to the file ni4882.c for more
information.

Parallel Polling
Although parallel polling is not widely used, it is a useful method for
obtaining the status of more than one device at the same time. The
advantage of parallel polling is that a single parallel poll can easily check
up to eight individual devices at once. In comparison, eight separate serial
polls would be required to check eight devices for their serial poll response
bytes. The value of the individual status bit (ist) determines the parallel
poll response.

Implementing a Parallel Poll with NI-488DDK Functions
Complete the following steps to implement parallel polling using
NI-488DDK functions. Each step contains example code.

1. Configure the device for parallel polling using the ibcmd function,
unless the device can configure itself for parallel polling.

Parallel poll configuration requires an 8-bit value to designate the data
line number, the ist sense, and whether or not the function configures
or unconfigures the device for the parallel poll. The bit pattern is as
follows:

0 1 1 E S D2 D1 D0

E is 1 to disable parallel polling and 0 to enable parallel polling for that
particular device.

S is 1 if the device is to assert the assigned data line when ist = 1, and
0 if the device is to assert the assigned data line when ist = 0.

D2 through D0 determine the number of the assigned data line. The
physical line number is the binary line number plus one. For example,
DIO3 has a binary bit pattern of 010.

The following example code configures a device at primary address 3
for parallel polling using NI-488DDK functions. The device asserts
DIO7 if its ist bit = 0, therefore, 0110 0110 (hex 66) is the parallel
poll configuration byte.

#include "ugpib.h"

char ppr;

ud = ibfind("gpib0");

Chapter 5 GPIB Programming Techniques

© National Instruments Corporation 5-5 NI-488DDK Software Reference Manual

ibsic(ud);

ibcmd(ud, "?#\x05\x66", 4);

If the GPIB interface board configures itself for a parallel poll, you
should use the ibppc function. Pass the board unit descriptor value as
the first argument in ibppc. In addition, if the individual status bit
(ist) of the board needs to be changed, use the ibist function.

In the following example, the GPIB board is to configure itself to
participate in a parallel poll. It asserts DIO5 when ist = 1 if a parallel
poll is conducted.

ibppc(ud, 0x6C);

ibist(ud, 1);

2. Conduct the parallel poll using ibrpp and check the response for a
certain value. The following example code performs the parallel poll
and compares the response to hex 10, which corresponds to DIO5.
If that bit is set, the ist of the device is 1.

ibrpp(ud, &ppr);

if (ppr & 0x10) printf("ist = 1\n");

3. Unconfigure the device for parallel polling with ibcmd. Notice that
any value having the parallel poll disable bit set (bit 4) in the bit pattern
disables the configuration, so you can use any value between hex 70
and 7E.

ibcmd(ud,"?#\x05\x70", 4);

© National Instruments Corporation A-1 NI-488DDK Software Reference Manual

A
Multiline Interface Messages

This appendix contains a multiline interface message reference list, which
describes the mnemonics and messages that correspond to the interface
functions. These multiline interface messages are sent and received with
ATN asserted.

For more information about these messages, refer to the ANSI/IEEE
Standard 488.1-1987, IEEE Standard Digital Interface for Programmable
Instrumentation.

Appendix A Multiline Interface Messages

NI-488DDK Software Reference Manual A-2 ni.com

Table A-1. Multiline Interface Messages

Hex Dec ASCII Msg Hex Dec ASCII Msg

00 0 NUL — 20 32 SP MLA0

01 1 SOH GTL 21 33 ! MLA1

02 2 STX — 22 34 " MLA2

03 3 ETX — 23 35 # MLA3

04 4 EOT SDC 24 36 $ MLA4

05 5 ENQ PPC 25 37 % MLA5

06 6 ACK — 26 38 & MLA6

07 7 BEL — 27 39 ' MLA7

08 8 BS GET 28 40 (MLA8

09 9 HT TCT 29 41) MLA9

0A 10 LF — 2A 42 * MLA10

0B 11 VT — 2B 43 + MLA11

0C 12 FF — 2C 44 , MLA12

0D 13 CR — 2D 45 - MLA13

0E 14 SO — 2E 46 . MLA14

0F 15 SI — 2F 47 / MLA15

10 16 DLE — 30 48 0 MLA16

11 17 DC1 LLO 31 49 1 MLA17

12 18 DC2 — 32 50 2 MLA18

13 19 DC3 — 33 51 3 MLA19

14 20 DC4 DCL 34 52 4 MLA20

15 21 NAK PPU 35 53 5 MLA21

16 22 SYN — 36 54 6 MLA22

17 23 ETB — 37 55 7 MLA23

18 24 CAN SPE 38 56 8 MLA24

19 25 EM SPD 39 57 9 MLA25

1A 26 SUB — 3A 58 : MLA26

1B 27 ESC — 3B 59 ; MLA27

1C 28 FS — 3C 60 < MLA28

1D 29 GS — 3D 61 = MLA29

1E 30 RS — 3E 62 > MLA30

1F 31 US CFE 3F 63 ? UNL

Multiline Interface Message Definitions

C F E † Configuration Enable
C F G † Configure
DCL Device Clear
GET Group Execute Trigger

GTL Go To Local
LLO Local Lockout
MLA My Listen Address
MSA My Secondary Address

†This multiline interface message is a proposed extension to the IEEE 488.1 specification to support the HS488 high-speed
protocol.

Appendix A Multiline Interface Messages

© National Instruments Corporation A-3 NI-488DDK Software Reference Manual

Table A-1. Multiline Interface Messages (Continued)

Hex Dec ASCII Msg Hex Dec ASCII Msg

40 64 @ MTA0 60 96 ` MSA0, PPE

41 65 A MTA1 61 97 a MSA1, PPE, CFG1

42 66 B MTA2 62 98 b MSA2, PPE, CFG2

43 67 C MTA3 63 99 c MSA3, PPE, CFG3

44 68 D MTA4 64 100 d MSA4, PPE, CFG4

45 69 E MTA5 65 101 e MSA5, PPE, CFG5

46 70 F MTA6 66 102 f MSA6, PPE, CFG6

47 71 G MTA7 67 103 g MSA7, PPE, CFG7

48 72 H MTA8 68 104 h MSA8, PPE, CFG8

49 73 I MTA9 69 105 i MSA9, PPE, CFG9

4A 74 J MTA10 6A 106 j MSA10, PPE, CFG10

4B 75 K MTA11 6B 107 k MSA11, PPE, CFG11

4C 76 L MTA12 6C 108 l MSA12, PPE, CFG12

4D 77 M MTA13 6D 109 m MSA13, PPE, CFG13

4E 78 N MTA14 6E 110 n MSA14, PPE, CFG14

4F 79 O MTA15 6F 111 o MSA15, PPE, CFG15

50 80 P MTA16 70 112 p MSA16, PPD

51 81 Q MTA17 71 113 q MSA17, PPD

52 82 R MTA18 72 114 r MSA18, PPD

53 83 S MTA19 73 115 s MSA19, PPD

54 84 T MTA20 74 116 t MSA20, PPD

55 85 U MTA21 75 117 u MSA21, PPD

56 86 V MTA22 76 118 v MSA22, PPD

57 87 W MTA23 77 119 w MSA23, PPD

58 88 X MTA24 78 120 x MSA24, PPD

59 89 Y MTA25 79 121 y MSA25, PPD

5A 90 Z MTA26 7A 122 z MSA26, PPD

5B 91 [MTA27 7B 123 { MSA27, PPD

5C 92 \ MTA28 7C 124 | MSA28, PPD

5D 93] MTA29 7D 125 } MSA29, PPD

5E 94 ^ MTA30 7E 126 ~ MSA30, PPD

5F 95 _ UNT 7F 127 DEL —

Multiline Interface Message Definitions (Continued)

MTA My Talk Address
PPC Parallel Poll Configure
PPD Parallel Poll Disable
PPE Parallel Poll Enable
PPU Parallel Poll Unconfigure
SDC Selected Device Clear

SPD Serial Poll Disable
SPE Serial Poll Enable
TCT Take Control
UNL Unlisten
UNT Untalk

© National Instruments Corporation B-1 NI-488DDK Software Reference Manual

B
Status Word Conditions

This appendix describes the conditions reported in the status word, ibsta.

For information about how to use ibsta in your application program, refer
to Chapter 3, Developing Your Application.

Table B-1 shows the status word layout.

Table B-1. Status Word Layout

Mnemonic Bit Pos. Hex Value Description

ERR 15 8000 GPIB error

TIMO 14 4000 Time limit exceeded

END 13 2000 END or EOS detected

SRQI 12 1000 SRQ interrupt received

CMPL 8 100 I/O completed

LOK 7 80 Lockout State

REM 6 40 Remote State

CIC 5 20 Controller-In-Charge

ATN 4 10 Attention is asserted

TACS 3 8 Talker

LACS 2 4 Listener

DTAS 1 2 Device Trigger State

DCAS 0 1 Device Clear State

Appendix B Status Word Conditions

NI-488DDK Software Reference Manual B-2 ni.com

ERR
ERR is set in the status word following any call that results in an error. You
can determine the particular error by examining the error variable iberr.
Appendix C, Error Codes and Solutions, describes error codes that are
recorded in iberr along with possible solutions. ERR is cleared following
any call that does not result in an error.

TIMO
TIMO indicates that the timeout period has been exceeded. TIMO is set in
the status word following an ibwait call if the TIMO bit of the mask
parameter is set and the time limit expires. TIMO is also set following any
I/O functions (for example, ibcmd, ibrd, and ibwrt) if a timeout occurs
during one of these calls. TIMO is cleared in all other circumstances.

END
END indicates either that the GPIB EOI line has been asserted or, if you
configure the software to terminate a read on an EOS byte, that the EOS
byte has been received. If the GPIB board is performing a shadow
handshake as a result of the ibgts function, any other function can return
a status word with the END bit set if the END condition occurs before or
during that call. END is cleared when any I/O operation is initiated.

SRQI
SRQI indicates that a GPIB device is requesting service. SRQI is set
whenever the GPIB board is CIC and the GPIB SRQ line is asserted. SRQI
is cleared either when the GPIB board ceases to be the CIC or when the
GPIB SRQ line is unasserted.

CMPL
CMPL indicates the condition of I/O operations. Because I/O calls in the
NI-488DDK driver are all synchronous (meaning the call does not return
until the operation is complete), CMPL is always set.

Appendix B Status Word Conditions

© National Instruments Corporation B-3 NI-488DDK Software Reference Manual

LOK
LOK indicates whether the board is in a lockout state. While LOK is set,
the ibloc function is inoperative for that board. LOK is set whenever the
GPIB board detects that the Local Lockout (LLO) message has been sent
either by the GPIB board or by another Controller. LOK is cleared when the
System Controller unasserts the Remote Enable (REN) GPIB line.

REM
REM indicates whether the board is in the remote state. REM is set
whenever the Remote Enable (REN) GPIB line is asserted and the GPIB
board detects that its listen address has been sent either by the GPIB board
or by another Controller. REM is cleared in the following situations:

• When REN becomes unasserted

• When the GPIB board as a Listener detects that the Go to Local (GTL)
command has been sent either by the GPIB board or by another
Controller

• When you call the ibloc function while the LOK bit is cleared in the
status word

CIC
CIC indicates whether the GPIB board is the Controller-In-Charge. CIC is
set either when you execute the ibsic function while the GPIB board is
System Controller or when another Controller passes control to the GPIB
board. CIC is cleared either when the GPIB board detects Interface Clear
(IFC) from the System Controller or when the GPIB board passes control
to another device.

ATN
ATN indicates the state of the GPIB Attention (ATN) line. ATN is set
whenever the GPIB ATN line is asserted, and it is cleared when the ATN
line is unasserted.

Appendix B Status Word Conditions

NI-488DDK Software Reference Manual B-4 ni.com

TACS
TACS indicates whether the GPIB board is addressed as a Talker. TACS is
set whenever the GPIB board detects that its talk address (and secondary
address, if enabled) has been sent either by the GPIB board itself or by
another Controller. TACS is cleared whenever the GPIB board detects the
Untalk (UNT) command, its own listen address, a talk address other than
its own talk address, or Interface Clear (IFC).

LACS
LACS indicates whether the GPIB board is addressed as a Listener. LACS
is set whenever the GPIB board detects that its listen address (and
secondary address, if enabled) has been sent either by the GPIB board itself
or by another Controller. LACS is also set whenever the GPIB board
shadow handshakes as a result of the ibgts function. LACS is cleared
whenever the GPIB board detects the Unlisten (UNL) command, its own
talk address, Interface Clear (IFC), or that the ibgts function has been
called without shadow handshake.

DTAS
DTAS indicates whether the GPIB board has detected a device trigger
command. DTAS is set whenever the GPIB board, as a Listener, detects that
the Group Execute Trigger (GET) command has been sent by another
Controller. DTAS is cleared on any call immediately following an ibwait
call, if the DTAS bit is set in the ibwait mask parameter.

DCAS
DCAS indicates whether the GPIB board has detected a device clear
command. DCAS is set whenever the GPIB board detects that the Device
Clear (DCL) command has been sent by another Controller, or whenever
the GPIB board as a Listener detects that the Selected Device Clear (SDC)
command has been sent by another Controller.

If you use the ibwait function to wait for DCAS and the wait is
completed, DCAS is cleared from ibsta after the next GPIB call. The
same is true of reads and writes. If you call a read or write function such as
ibwrt, and DCAS is set in ibsta, the I/O operation is aborted. DCAS is
cleared from ibsta after the next GPIB call.

© National Instruments Corporation C-1 NI-488DDK Software Reference Manual

C
Error Codes and Solutions

This appendix describes each error, including conditions under which it
might occur and possible solutions.

Table C-1 lists the GPIB error codes.

Table C-1. GPIB Error Codes

Error
Mnemonic

iberr
Value Meaning

EDVR 0 System error

ECIC 1 Function requires GPIB board to be CIC

ENOL 2 No Listeners on the GPIB

EADR 3 GPIB board not addressed correctly

EARG 4 Invalid argument to function call

ESAC 5 GPIB board not System Controller as
required

EABO 6 I/O operation aborted (timeout)

ENEB 7 Nonexistent GPIB board

ECAP 11 No capability for operation

Appendix C Error Codes and Solutions

NI-488DDK Software Reference Manual C-2 ni.com

EDVR (0)
EDVR is returned when the board name passed to ibfind cannot be
accessed. The global variable ibcntl contains an error code. This error
occurs when you try to access a board that is not installed or configured
properly.

EDVR is also returned if an invalid unit descriptor is passed to any
NI-488DDK function call.

Solutions
Following are some possible solutions:

• Use only board names configured in the driver source code as
parameters to the ibfind function.

• Use the unit descriptor returned from ibfind as the first parameter in
subsequent NI-488DDK functions. Examine the variable before the
failing function to make sure its value has not been corrupted.

ECIC (1)
ECIC is returned when one of the following board functions or routines is
called while the board is not CIC:

• Any board-level NI-488DDK functions that issue GPIB command
bytes: ibcmd, ibln, and ibrpp

• ibcac and ibgts

Solutions
Following are some possible solutions:

• Use ibsic to make the GPIB board become CIC on the GPIB.

• Use ibrsc 1 to make sure your GPIB board is configured as System
Controller.

• In multiple CIC situations, always be certain that the CIC bit appears
in the status word ibsta before attempting these calls. If it does not
appear, you can perform an ibwait (for CIC) call to delay further
processing until control is passed to the board.

Appendix C Error Codes and Solutions

© National Instruments Corporation C-3 NI-488DDK Software Reference Manual

ENOL (2)
ENOL usually occurs when you attempt a write operation without
addressing Listeners. ENOL can also indicate that the GPIB address the
application uses for a device does not match the GPIB address of any
device connected to the bus, that the GPIB cable is not connected to the
device, or that the device is not powered on.

ENOL can occur in situations where the GPIB board is not the CIC and the
Controller asserts ATN before the write call in progress has ended.

Solutions
Following are some possible solutions:

• Make sure that the GPIB address you are using matches the GPIB
address of the device to which you want to write data.

• Use the appropriate hex code in ibcmd to address your device.

• Check your cable connections and make sure at least two-thirds of
your devices are powered on.

• Reduce the write byte count to that which is expected by the
Controller.

EADR (3)
EADR occurs when the GPIB board is CIC and is not properly addressing
itself before read and write functions.

EADR is also returned by the function ibgts when the shadow-handshake
feature is requested and the GPIB ATN line is already unasserted. In this
case, the shadow handshake is not possible and the error is returned to
notify you of that fact.

Solutions
Following are some possible solutions:

• Make sure that the GPIB board is addressed correctly using ibcmd
before calling ibrd or ibwrt.

• Avoid calling ibgts except immediately after an ibcmd call. (ibcmd
causes ATN to be asserted.)

Appendix C Error Codes and Solutions

NI-488DDK Software Reference Manual C-4 ni.com

EARG (4)
EARG results when an invalid argument is passed to a function call.
The following are some examples:

• ibtmo called with a value not in the range 0 through 17

• ibeos called with meaningless bits set in the high byte of the second
parameter

• ibpad or ibsad called with invalid addresses

• ibppc called with invalid parallel poll configurations

Solution
Make sure that the parameters passed to the NI-488DDK function are valid.

ESAC (5)
ESAC results when ibsic or ibsre is called when the GPIB board does
not have System Controller capability.

Solution
Give the GPIB board System Controller capability by calling ibrsc 1.

EABO (6)
EABO indicates that an I/O operation has been canceled, usually due to a
timeout condition. Another cause is receiving the Device Clear message
from the CIC while performing an I/O operation. Frequently, the I/O is not
progressing (the Listener is not continuing to handshake or the Talker has
stopped talking), or the byte count in the call which timed out was more
than the other device was expecting.

Solutions
Following are some possible solutions:

• Use the correct byte count in input functions or have the Talker use the
END message to signify the end of the transfer.

• Lengthen the timeout period for the I/O operation using ibtmo.

• Make sure that you have configured your device to send data before
you request data.

Appendix C Error Codes and Solutions

© National Instruments Corporation C-5 NI-488DDK Software Reference Manual

ENEB (7)
ENEB occurs when no GPIB board exists at the I/O address specified when
the driver is installed. This problem happens when the board is not
physically plugged into the system, the I/O address specified during
configuration does not match the actual board setting, or there is a system
conflict with the base I/O address.

Solution
Make sure there is a GPIB board in your computer that is properly
configured both in hardware and software using a valid base I/O address.

ECAP (11)
ECAP results when your GPIB board lacks the ability to carry out an
operation or when a particular capability has been disabled in the software
and a call is made that requires the capability.

Solution
Check the validity of the call, or make sure your GPIB interface board and
the driver both have the needed capability.

© National Instruments Corporation D-1 NI-488DDK Software Reference Manual

D
Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

• Support—Online technical support resources include the following:

– Self-Help Resources—For immediate answers and solutions,
visit our extensive library of technical support resources available
in English, Japanese, and Spanish at ni.com/support. These
resources are available for most products at no cost to registered
users and include software drivers and updates, a KnowledgeBase,
product manuals, step-by-step troubleshooting wizards, hardware
schematics and conformity documentation, example code,
tutorials and application notes, instrument drivers, discussion
forums, a measurement glossary, and so on.

– Assisted Support Options—Contact NI engineers and other
measurement and automation professionals by visiting
ni.com/ask. Our online system helps you define your question
and connects you to the experts by phone, discussion forum,
or email.

• Training—Visit ni.com/custed for self-paced tutorials, videos, and
interactive CDs. You also can register for instructor-led, hands-on
courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, NI Alliance Program
members can help. To learn more, call your local NI office or visit
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation G-1 NI-488DDK Software Reference Manual

Glossary

Prefix Meaning Value

p- pico- 10–12

µ- micro- 10– 6

m- milli- 10–3

k- kilo- 103

M- mega- 106

A

acceptor handshake Listeners use this GPIB interface function to receive data, and all devices
use it to receive commands. See handshake.

access board The GPIB board that controls and communicates with the devices on the
bus that are attached to it.

ANSI American National Standards Institute.

API Application programming interface.

ASCII American Standard Code for Information Interchange.

asynchronous An action or event that occurs at an unpredictable time with respect to the
execution of a program.

B

base I/O address See I/O address.

board-level function A rudimentary function that performs a single operation.

C

caller A place in the program from which a call is made; the calling function.

Glossary

NI-488DDK Software Reference Manual G-2 ni.com

CFE Configuration Enable. The GPIB command which precedes CFGn and is
used to place devices into their configuration mode.

CFGn These GPIB commands (CFG1 through CFG15) follow CFE and are used
to configure all devices for the number of meters of cable in the system so
that HS488 transfers occur without errors.

CIC Controller-In-Charge. The device that manages the GPIB by sending
interface messages to other devices.

CPU Central processing unit.

D

DAV Data Valid. One of the three GPIB handshake lines. See handshake.

DCL Device Clear. The GPIB command used to reset the device or internal
functions of all devices. See SDC.

DIO1 through DIO8 The GPIB lines that are used to transmit command or data bytes from one
device to another.

DMA Direct memory access. High-speed data transfer between the GPIB board
and memory that is not handled directly by the CPU. Not available on some
systems.

driver Device driver software installed within the operating system.

E

END or END Message A message that signals the end of a data string. END is sent by asserting the
GPIB End or Identify (EOI) line with the last data byte.

EOI A GPIB line that is used to signal either the last byte of a data message
(END) or the parallel poll Identify (IDY) message.

EOS or EOS Byte A 7- or 8-bit end-of-string character that is sent as the last byte of a data
message.

EOT End of transmission.

ESB The Event Status bit is part of the IEEE 488.2-defined status byte which is
received from a device responding to a serial poll.

Glossary

© National Instruments Corporation G-3 NI-488DDK Software Reference Manual

F

Function Return Describes the return value of the function.

G

GET Group Execute Trigger. It is the GPIB command used to trigger a device or
internal function of an addressed Listener.

GPIB General Purpose Interface Bus is the common name for the
communications interface system defined in ANSI/IEEE Standard
488.1-1987 and ANSI/IEEE Standard 488.2-1992.

GPIB address The address of a device on the GPIB, composed of a primary address (MLA
and MTA) and perhaps a secondary address (MSA). The GPIB board has
both a GPIB address and an I/O address.

GPIB board Refers to the National Instruments family of GPIB interface boards.

GTL Go To Local. It is the GPIB command used to place an addressed Listener
in local (front panel) control mode.

H

handshake The mechanism used to transfer bytes from the Source Handshake function
of one device to the Acceptor Handshake function of another device. The
three GPIB lines DAV, NRFD, and NDAC are used in an interlocked
fashion to signal the phases of the transfer, so that bytes can be sent
asynchronously (for example, without a clock) at the speed of the slowest
device.

For more information about handshaking, refer to the ANSI/IEEE Standard
488.1-1987.

hex Hexadecimal; a number represented in base 16. For example,
decimal 16 = hex 10.

Glossary

NI-488DDK Software Reference Manual G-4 ni.com

I

I/O Input/Output. In the context of this manual, the transmission of commands
or messages between the computer via the GPIB board and other devices
on the GPIB.

I/O address The address of the GPIB board from the point of view of the CPU, as
opposed to the GPIB address of the GPIB board. Also called port address
or board address.

ibcnt After each NI-488 I/O function, this global variable contains the actual
number of bytes transmitted.

iberr A global variable that contains the specific error code associated with a
function call that failed.

ibsta At the end of each function call, this global variable (status word) contains
status information.

IEEE Institute of Electrical and Electronic Engineers.

interface message A broadcast message sent from the Controller to all devices and used to
manage the GPIB. Interface messages are also referred to as GPIB
commands.

ist An Individual Status bit of the status byte used in the Parallel Poll
Configure function.

K

kernel The set of programs in an operating system that implements basic system
functions.

kernel-level
implementation

The linking or installation of the NI-488DDK driver into the operating
system kernel so that the driver functions as a general system resource
available to all application programs.

L

language interface Code that enables an application program that uses NI-488DDK functions
to access the driver.

Glossary

© National Instruments Corporation G-5 NI-488DDK Software Reference Manual

Listener A GPIB device that receives data messages from a Talker.

LLO Local Lockout. The GPIB command used to tell all devices that they may
or should ignore remote (GPIB) data messages or local (front panel)
controls, depending on whether the device is in local or remote program
mode.

M

m Meters.

MAV The Message Available bit is part of the IEEE 488.2-defined status byte
which is received from a device responding to a serial poll.

MLA My Listen Address. A GPIB command used to address a device to be a
Listener. It can be any one of the 31 primary addresses.

MSA My Secondary Address. The GPIB command used to address a device to be
a Listener or a Talker when extended (two byte) addressing is used. The
complete address is a MLA or MTA address followed by an MSA address.
There are 31 secondary addresses for a total of 961 distinct listen or talk
addresses for devices.

MTA My Talk Address. A GPIB command used to address a device to be a
Talker. It can be any one of the 31 primary addresses.

N

NDAC Not Data Accepted. One of the three GPIB handshake lines.
See handshake.

NRFD Not Ready For Data. One of the three GPIB handshake lines.
See handshake.

O

OS Operating system.

Glossary

NI-488DDK Software Reference Manual G-6 ni.com

P

parallel poll The process of polling all configured devices at once and reading a
composite poll response. See serial poll.

PPC Parallel Poll Configure. It is the GPIB command used to configure an
addressed Listener to participate in polls.

PPD Parallel Poll Disable. It is the GPIB command used to disable a configured
device from participating in polls. There are 16 PPD commands.

PPE Parallel Poll Enable. It is the GPIB command used to enable a configured
device to participate in polls and to assign a DIO response line. There are
16 PPE commands.

PPU Parallel Poll Unconfigure. It is the GPIB command used to disable any
device from participating in polls.

S

s Seconds.

SDC Selected Device Clear. The GPIB command used to reset internal or device
functions of an addressed Listener. See DCL.

serial poll The process of polling and reading the status byte of one device at a time.
See parallel poll.

service request See SRQ.

SPD Serial Poll Disable. The GPIB command used to cancel an SPE command.

SPE Serial Poll Enable. The GPIB command used to enable a specific device to
be polled. That device must also be addressed to talk. See SPD.

SRQ Service Request. The GPIB line that a device asserts to notify the CIC that
the device needs servicing.

status byte The IEEE 488.2-defined data byte sent by a device when it is serially
polled.

status word See ibsta.

Glossary

© National Instruments Corporation G-7 NI-488DDK Software Reference Manual

synchronous Refers to the relationship between the NI-488DDK driver functions and a
process when executing driver functions is predictable; the process is
blocked until the driver completes the function.

System Controller The single designated Controller that can assert control (become CIC of the
GPIB) by sending the Interface Clear (IFC) message. Other devices can
become CIC only by having control passed to them.

T

Talker A GPIB device that sends data messages to Listeners.

TCT Take Control. The GPIB command used to pass control of the bus from the
current Controller to an addressed Talker.

timeout A feature of the NI-488DDK driver that prevents I/O functions from
hanging indefinitely when there is a problem on the GPIB.

U

ud Unit descriptor. A variable name and first argument of each function call
that contains the unit descriptor of the GPIB interface board or other GPIB
device that is the object of the function.

UNL Unlisten. The GPIB command used to unaddress any active Listeners.

UNT Untalk. The GPIB command used to unaddress an active Talker.

user-level
implementation

The static or dynamic linking of the NI-488DDK driver directly to a user
application program. This implementation method is not available on some
operating systems, for which a kernel-level implementation is the only
option.

© National Instruments Corporation I-1 NI-488DDK Software Reference Manual

Index

A
addressing, GPIB, 1-3
application

compiling and linking, 3-4
development, 3-1
items to include in, 3-1

ATN, B-3

C
CIB language interface module (cib.c)

(figure), 2-3
CIC, B-3
CMPL, B-2
communication errors, 3-6
compiling

application, 3-4
driver, 2-6

configuration
controlling more than one board, 1-7
errors, 3-6
linear and star system (figure), 1-6
multiboard system setup (figure), 1-7
requirements, 1-7
setting up and configuring your system, 1-6

contacting National Instruments, D-1
Controller-In-Charge, 1-3
Controllers, 1-3
controlling more than one board, 1-7
conventions used in the manual, ix
count variables (ibcnt and ibcntl), 3-4
customer

education, D-1
professional services, D-1
technical support, D-1

D
data lines, 1-4
data transfer termination, 5-1
DCAS, B-4
debugging

considerations, 3-5
driver, 2-7

developing your application, 3-1
diagnostic resources, D-1
distribution

contents, 1-2
media, 1-1

documentation
conventions used in manual, ix
debugging tools, 2-9
online library, D-1
related documentation, x

driver
choosing implementation method, 2-4
CIB language interface module (cib.c)

(figure), 2-3
coding conventions, 2-4
compiling, 2-6
debugging, 2-7

run-time errors, 2-8
tools documentation, 2-9

development, 2-1
directory (table), 2-2
IB driver module (ib.c) (figure), 2-3
installing, 2-6
linking, 2-6
organization, 2-1
porting DDK driver, 2-6
testing, 2-7

Index

NI-488DDK Software Reference Manual I-2 ni.com

drivers
instrument, D-1
software, D-1

DTAS, B-4

E
EABO (6), C-4
EADR (3), C-3
EARG (4), C-4
ECAP (11), C-5
ECIC (1), C-2
EDVR (0), C-2
END, B-2
ENEB (7), C-5
ENOL (2), C-3
ERR, B-2
error codes and solutions, C-1

EABO (6), C-4
EADR (3), C-3
EARG (4), C-4
ECAP (11), C-5
ECIC (1), C-2
EDVR (0), C-2
ENEB (7), C-5
ENOL (2), C-3
ESAC (5), C-4

error variable (iberr), 3-3
errors

communication, 3-6
repeat addressing, 3-6
termination method, 3-6

configuration, 3-6
timing, 3-6

ESAC (5), C-4
example code, D-1

F
frequently asked questions, D-1
function names, 4-1
functions, using, 3-1

G
global status variables, using, 3-5
global variables

checking status with, 3-2
GPIB

address bits (table), 1-4
addressing, 1-3
conditions, waiting for, 5-2
Controller-In-Charge, 1-3
data lines, 1-4
error codes (table), C-1
handshake lines, 1-4
interface management lines, 1-5
overview, 1-3
programming techniques, 5-1

data transfer termination, 5-1
parallel polling, 5-4
serial polling, 5-2
Talker/Listener applications, 5-2
waiting for GPIB conditions, 5-2

sending messages across, 1-4
System Controller, 1-3
Talkers, Listeners, and Controllers, 1-3

H
handshake lines, 1-4
help

professional services, D-1
technical support, D-1

Index

© National Instruments Corporation I-3 NI-488DDK Software Reference Manual

I
IB driver module (ib.c) (figure), 2-3
ibask, 4-3
ibcac, 4-4
ibcmd, 4-5
ibcnt, 3-4
ibcntl, 3-4
ibconfig, 4-6
ibdma, 4-7
ibeos, 4-8
ibeot, 4-10
iberr, 3-3
ibfind, 4-11
ibgts, 4-12
ibist, 4-13
iblines, 4-14
ibln, 4-16
ibloc, 4-17
ibonl, 4-18
ibpad, 4-19
ibpoke, 4-20
ibppc, 4-21
ibrd, 4-22
ibrpp, 4-23
ibrsc, 4-24
ibrsv, 4-25
ibsad, 4-26
ibsic, 4-27
ibsre, 4-28
ibsta, 3-2
ibtmo, 4-29
ibwait, 4-31
ibwrt, 4-31, 4-33
implementation method, choosing, 2-4
installing driver, 2-6
instrument drivers, D-1
interface management lines, 1-5
introduction, 1-1

K
KnowledgeBase, D-1

L
LACS, B-4
linear configuration (figure), 1-6
linking

application, 3-4
driver, 2-6

Listeners, 1-3
LOK, B-3

M
messages, sending across the GPIB, 1-4
multiboard system setup (figure), 1-7
multiline interface messages (table), A-2

N
National Instruments

customer education, D-1
professional services, D-1
system integration services, D-1
technical support, D-1
worldwide offices, D-1

NI-488DDK software
application development, 3-1
checking status with global variables, 3-2
choosing implementation method, 2-4
CIB language interface module (cib.c)

(figure), 2-3
compiling and linking application, 3-4
compiling, linking, and installing

driver, 2-6
count variables (ibcnt and ibcntl), 3-4
debugging

considerations, 3-5

Index

NI-488DDK Software Reference Manual I-4 ni.com

run-time errors, 2-8
tools documentation, 2-9

distribution
contents, 1-2
media, 1-1

driver
coding conventions, 2-4
development, 2-1
directory (table), 2-2
organization, 2-1

error codes and solutions, C-1
error variable (iberr), 3-3
functions, 4-1, 4-24

description, 4-1
examples, 4-1
format, 4-1
function names, 4-1
ibask, 4-3
ibcac, 4-4
ibcmd, 4-5
ibconfig, 4-6
ibdma, 4-7
ibeos, 4-8
ibeot, 4-10
ibfind, 4-11
ibgts, 4-12
ibist, 4-13
iblines, 4-14
ibln, 4-16
ibloc, 4-17
ibonl, 4-18
ibpad, 4-19
ibpoke, 4-20
ibppc, 4-21
ibrd, 4-22
ibrpp, 4-23
ibrsv, 4-25
ibsad, 4-26
ibsic, 4-27

ibsre, 4-28
ibtmo, 4-29
ibwait, 4-31
ibwrt, 4-31, 4-33
implementing a parallel poll with, 5-4
input and output, 4-1
list (table), 4-2
possible errors, 4-1
purpose, 4-1
SRQ and serial polling with, 5-3
using, 3-1

GPIB programming techniques, 5-1
IB driver module (ib.c) (figure), 2-3
items to include in your application, 3-1
kernel-level implementation, 2-5
OS Layer

porting DDK driver, 2-6
support code location, 2-5
writing, 2-5

overview, 1-1
status word (ibsta), 3-2
status word conditions, B-1
testing and debugging driver, 2-7
user-level implementation, 2-5

O
online technical support, D-1
OS Layer, 2-5

P
parallel polling, 5-4

implementing a parallel poll with
NI-488DDK functions, 5-4

phone technical support, D-1
professional services, D-1
programming examples, D-1
programming techniques, GPIB, 5-1

Index

© National Instruments Corporation I-5 NI-488DDK Software Reference Manual

R
related documentation, x
REM, B-3
repeat addressing, 3-6
run-time errors, debugging, 2-8

S
serial polling, 5-2

service requests from IEEE 488
devices, 5-3

service requests from IEEE 488.2
devices, 5-3

SRQ and serial polling with
NI-488.2DDK functions, 5-3

service requests
from IEEE 488 devices, 5-3
from IEEE 488.2 devices, 5-3

software drivers, D-1
SRQI, B-2
star system configuration (figure), 1-6
status word (ibsta), 3-2
status word conditions, B-1

ATN, B-3
CIC, B-3
CMPL, B-2
DCAS, B-4
DTAS, B-4
END, B-2
ERR, B-2
LACS, B-4
LOK, B-3
REM, B-3

SRQI, B-2
TACS, B-4
TIMO, B-2

status word layout (table), 3-2, B-1
status, checking with global variables, 3-2
support

technical, D-1
system configuration, 1-6
System Controller, 1-3
system integration services, D-1

T
TACS, B-4
Talker/Listener applications, 5-2
Talkers, 1-3
technical support, D-1
telephone technical support, D-1
termination method, 3-6
testing driver, 2-7
timing errors, 3-6
TIMO, B-2
training

customer, D-1
troubleshooting resources, D-1

W
Web

professional services, D-1
technical support, D-1

worldwide technical support, D-1

	NI-488DDK Software Reference Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions
	Related Documentation

	Chapter 1 Introduction
	NI-488DDK Software
	Working with the Distribution Media
	Working with the Distribution Contents

	GPIB Overview
	Talkers, Listeners, and Controllers
	Controller�In�Charge and System Controller
	GPIB Addressing
	Table 1-1. GPIB Address Bits

	Sending Messages across the GPIB
	Data Lines
	Handshake Lines
	Table 1-2. GPIB Handshake Lines
	Interface Management Lines
	Table 1-3. GPIB Interface Management Lines

	Setting Up and Configuring Your System
	Figure 1-1. Linear and Star System Configuration

	Controlling More Than One Board
	Figure 1-2. Example of Multiboard System Setup
	Configuration Requirements

	Chapter 2 Developing Your Driver
	Driver Organization
	Table 2-1. NI-488DDK Driver Directory
	Figure 2-1. The IB Driver Module (ib.c)
	Figure 2-2. The CIB Language Interface Module (cib.c)

	Driver Coding Conventions
	Choosing an Implementation Method
	Figure 2-3. User-Level Implementation
	Figure 2-4. Kernel-Level Implementation

	Writing a New OS Layer
	Support Code Location
	Porting the DDK Driver

	Compiling, Linking, and Installing the Driver
	Testing and Debugging the Driver
	Debugging Run-Time Errors
	Documentation of Debugging Tools

	Chapter 3 Developing Your Application
	Using NI-488DDK Functions
	Items to Include in Your Application
	Checking Status with Global Variables
	Status Word (ibsta)
	Table 3-1. Status Word Layout

	Error Variable (iberr)
	Count Variables (ibcnt and ibcntl)

	Compiling and Linking Your Application
	Debugging Considerations
	Using the Global Status Variables
	Configuration Errors
	Timing Errors
	Communication Errors
	Repeat Addressing
	Termination Method

	Chapter 4 NI-488DDK Functions
	Legend
	List of NI-488DDK Functions
	Table 4-1. NI-488DDK Functions

	IBASK
	Table 4-2. ibask Board Configuration Parameter Options

	IBCAC
	IBCMD
	IBCONFIG
	Table 4-3. ibconfig Board Configuration Parameter Options

	IBDMA
	IBEOS
	Table 4-4. EOS Configurations

	IBEOT
	IBFIND
	IBGTS
	IBIST
	IBLINES
	IBLN
	IBLOC
	IBONL
	IBPAD
	IBPOKE
	IBPPC
	IBRD
	IBRPP
	IBRSC
	IBRSV
	IBSAD
	IBSIC
	IBSRE
	IBTMO
	Table 4-5. Timeout Code Values

	IBWAIT
	Table 4-6. Wait Mask Layout

	IBWRT

	Chapter 5 GPIB Programming Techniques
	Termination of Data Transfers
	Waiting for GPIB Conditions
	Talker/Listener Applications
	Serial Polling
	Service Requests from IEEE 488 Devices
	Service Requests from IEEE 488.2 Devices
	SRQ and Serial Polling with NI-488DDK Functions

	Parallel Polling
	Implementing a Parallel Poll with NI-488DDK Functions

	Appendix A Multiline Interface Messages
	Table A-1. Multiline Interface Messages

	Appendix B Status Word Conditions
	Table B-1. Status Word Layout

	Appendix C Error Codes and Solutions
	Table C-1. GPIB Error Codes

	Appendix D Technical Support and Professional Services
	Glossary
	A-C
	D-E
	F-H
	I-L
	M-O
	P-S
	T-U

	Index
	A-D
	E-H
	I-N
	O-P
	R-W

